Handout 3: Five principles for effective questioning

1. Plan to use questions that encourage thinking and reasoning

Really effective questions are planned beforehand. It is helpful to plan *sequences* of questions that build on and extend students' thinking. A good questioner, of course, remains flexible and allows time to follow up responses.

	 What do you already know that might be useful here?
Beginning an	 What sort of diagram might be helpful?
inquiry	Can you invent a simple notation for this?
	How can you simplify this problem?
	What is known and what is unknown?
	What assumptions might we make?
	Where have you seen something like this before?
Progressing with	• What is fixed here, and what can we change?
an inquiry	• What is the same and what is different here?
	• What would happen if I changed this to this ?
	Is this approach going anywhere?
	• What will you do when you get that answer?
	• This is just a special case of what?
	Can you form any hypotheses?
	Can you think of any counterexamples?
	What mistakes have we made?
	 Can you suggest a different way of doing this?
	 What conclusions can you make from this data?
	 How can we check this calculation without doing it all again?
	 What is a sensible way to record this?
	 How can you best display your data?
Interpreting and	 Is it better to use this type of chart or that one? Why?
evaluating the	 What patterns can you see in this data?
results of an	 What reasons might there be for these patterns?
inquiry	 Can you give me a convincing argument for that statement?
	 Do you think that answer is reasonable? Why?
	 How can you be 100% sure that is true? Convince me!
	 What do you think of Anne's argument? Why?
	 Which method might be best to use here? Why?
	What method did you use?
Communicating	 What other methods have you considered?
conclusions and	 Which of your methods was the best? Why?
reflecting	Which method was the quickest?
	 Where have you seen a problem like this before?
	 What methods did you use last time? Would they have worked here?
	 What helpful strategies have you learned for next time?

THE ART OF QUESTIONING IN MATHEMATICS

From The NCTM Professional Teaching Standards

HELP STUDENTS WORK TOGETHER TO MAKE SENSE OF MATH

- "What do others think about what said?"
- "Do you agree? Disagree? Why or why not?"
- "Does anyone have the same answer but a different way to explain it?"
- "Would you ask the rest of the class that question?"
- "Do you understand what they are saying?"
- "Can you convince the rest of us that that makes sense?"

HELP STUDENTS TO RELY MORE ON THEMSELVES TO DETERMINE WHETHER SOMETHING IS MATHEMATICALLY CORRECT

- "Why do you think that?"
- "Why is that true?"
- "How did you reach that conclusion?"
- "Does that make sense?"
- "Can you make a model and show that?"

HELP STUDENTS TO LEARN TO REASON MATHEMATICALLY

- "Does that always work? Why or why not?"
- "Is that true for all cases? Explain?"
- "Can you think of a counter example?"
- "How could you prove that?"
- "What assumptions are you making?"

HELP STUDENTS LEARN TO ANALYZE, INVENT, AND SOLVE PROBLEMS

- ? What if not?" "What would happen if
- "Do you see a pattern? Explain?"
- "What are some possibilities here?"
- "Can you predict the next one? What about the last one?"
- "How did you think about the problem?"
- "What decision do you think he/she should make?"
- "What is alike and what is different about your method of solution and his/hers?"

HELP STUDENT CONNECT MATHEMATICAL IDEAS AND APPLICATIONS ?"

- "How does this relate to
- "What ideas that we have learned before were useful in solving this problem?"
- "Have we ever solved a problem like this one before?"
- "What uses of mathematics did you find in the newspaper last night?"
- "Can you give me an example of