DOK Distinguishing Between Depth of Knowledge Levels in Mathematics

Topic	Adding Whole Numbers	Money	Fractions on a Number Line	Area and Perimeter	Subtracting Mixed Numbers
CCSS	• 1.NBT.4	• 2.MD.8	• 3.NF.2	• 3.MD.8	• 5.NF.1
Standard(s)	• 2.NBT.5			• 4.MD.3	
DOK 1	Find the sum.	If you have 2	Which point is located at $\frac{7}{12}$	Find the perimeter	Find the difference.
Example		dimes and 3	below?	of a rectangle that	
	44 + 27 =	pennies, how		measures 4 units	_ 1 _ 2
		many cents	<	by 8 units.	$5\frac{1}{2} - 4\frac{1}{2} =$
		do you have	$0 \frac{1}{2}$ 1		2 5
DOK 2	Fill in the boxes below	Make 47¢ in	Label the point where $\frac{3}{2}$	List the	Create three different mixed
Example	using the whole	three	belongs on the number line	measurements of	numbers that will make the
	numbers 1 through 9,	different	below. Be as precise as	three different	equation true by using the whole
	no more than one time	ways with	possible.	rectangles that	numbers 1 through 9, no more
	each, so that you make	either	P	each has a	than one time each,. You may
	a true equation.	quarters,		perimeter of 20	reuse the same whole numbers
		dimes,	<+ + →	units.	for each of the three mixed
	+ 53 =	nickels, or	$0 \frac{1}{3}$		numbers.
		pennies.			$5\frac{4}{1} - \frac{1}{1} = 3\frac{1}{1}$
					5 20
DOK 3	Make the largest sum	Make 47¢	Create 5 fractions using the	What is the	Make the smallest difference by
Example	by filling in the boxes	using exactly	whole numbers 0 through 9,	greatest area you	filling in the boxes below using
	below using the whole	5 coins with	no more than one time each,	can make with a	the whole numbers 1 through 9,
	numbers 1 through 9,	either	as numerators and	rectangle that has a	no more than one time each.
	no more than one time	quarters,		perimeter of 24	
	each.	nickels or		units?	
		nennies			
		permes			ii ii

ROBERT KAPLINSKY

More free DOK 2 & 3 problems available at openmiddle.com | © 2015 Robert Kaplinsky, robertkaplinsky.com

DOK Distinguishing Between Depth of Knowledge Levels in Mathematics

Topic	Surface Area and Probability		Transformations	Factoring	Quadratics in Vertex
	Volume			Quadratics	Form
CCSS	• 6.G.4	• 7.SP.5	• 8.G.1	• A-SSE.3a	• F-IF.7a
Standard(s)	• 7.G.6	• 7.SP.7	• G-CO.5		
DOK 1	Find the surface	What is the probability of	Rotate the image below 90°	Find the factors:	Find the roots and
Example	area of a	rolling a sum of 5 using	counterclockwise and reflect it	$0^2 \cdot \pi \cdot 0$	maximum of the
	rectangular prism	two 6-sided dice?	across a	$2x^2 + 7x + 3$	quadratic equation
	that measures 3		horizontal		below.
	units by 4 units by		line.		$a_1 = 2(a_1 - 4)^2 - 2$
	5 units.		Ав		$y = 3(x - 4)^2 - 3$
DOK 2	List the	What value(s) have a	List three sequences of	Fill in the blank	Create three
Example	measurements of	1/12 probability of being	transformations that take pre-	with integers so	equations for
	three different	rolled as the sum of two		that the quadratic	quadratics in vertex
	rectangular prisms	6-sided dice?	ABCD to	expression is	form that have roots
	that each has a			factorable.	at 3 and 5 but have
	surface area of 20		ABCD.		
	square units.		Pre-Image Image	$x^2 + \x + 4$	
	What is the	Fill in the blanks to	What is the fowest number of	Fill the blank by	Values.
DUK 3 Evample	areatest volume	complete this sentence	transformations needed to take	finding the largest	create a quadratic
Liample	you can make with	using the whole numbers	pre-image ABCD to image A'B'C'D'2	and smallest	largest maximum
	a rectangular	1 through 9 no more		integers that will	value using the
	prism that has a	than one time each.	B'	make the quadratic	whole numbers 1
	surface area of 20			expression	through 9, no more
	square units?	Rolling a sum of on	\leq γ γ	factorable.	than one time each.
	•	twosided dice is the			
		same probability as rolling	В	$2x^2 + 3x + _$	$y = - [(x - [))^2 + []$
		a sum of on two	D' Pre-Image Image		
		sided dice.			

ROBERT KAPLINSKY

More free DOK 2 & 3 problems available at openmiddle.com | © 2015 Robert Kaplinsky, robertkaplinsky.com