Distinguishing Between Depth of Knowledge Levels in Mathematics

| Topic | Adding Whole Numbers | Money | Fractions on a Number Line | Area and Perimeter | Subtracting Mixed Numbers |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { CCSS } \\ & \text { Standard(s) } \end{aligned}$ | - 1.NBT. 4 <br> - 2.NBT. 5 | - 2.MD. 8 | - 3.NF. 2 | - 3.MD. 8 <br> - 4.MD. 3 | - 5.NF. 1 |
| DOK 1 <br> Example | Find the sum. $44+27=$ | If you have 2 dimes and 3 pennies, how many cents do you have | Which point is located at $\frac{7}{12}$ below? | Find the perimeter of a rectangle that measures 4 units by 8 units. | Find the difference. $5 \frac{1}{2}-4 \frac{2}{3}=$ |
| DOK 2 Example | Fill in the boxes below using the whole numbers 1 through 9, no more than one time each, so that you make a true equation. $\square$ $+53=$ $\square$ | Make 47 $\$$ in three different ways with either quarters, dimes, nickels, or pennies. | Label the point where $\frac{3}{4}$ belongs on the number line below. Be as precise as possible. | List the measurements of three different rectangles that each has a perimeter of 20 units. | Create three different mixed numbers that will make the equation true by using the whole numbers 1 through 9, no more than one time each,. You may reuse the same whole numbers for each of the three mixed numbers. $5 \frac{4}{5}-\square=3 \frac{1}{20}$ |
| DOK 3 <br> Example | Make the largest sum by filling in the boxes below using the whole numbers 1 through 9, no more than one time each. $\qquad$ $+$ $\square$ $=$ | Make 47 $\$$ using exactly 5 coins with either quarters, dimes, nickels, or pennies. | Create 5 fractions using the whole numbers 0 through 9, no more than one time each, as numerators and denominators and correctly place them all on a number line. | What is the greatest area you can make with a rectangle that has a perimeter of 24 units? | Make the smallest difference by filling in the boxes below using the whole numbers 1 through 9, no more than one time each. |

Distinguishing Between Depth of Knowledge Levels in Mathematics

| Topic | Surface Area and Volume | Probability | Transformations | Factoring Quadratics | Quadratics in Vertex Form |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CCSS <br> Standard(s) | - 6.G. 4 <br> - 7.G. 6 | - 7.SP. 5 <br> - 7.SP. 7 | - 8.G. 1 <br> - G-CO. 5 | - A-SSE.3a | - F-IF.7a |
| DOK 1 <br> Example | Find the surface area of a rectangular prism that measures 3 units by 4 units by 5 units. | What is the probability of rolling a sum of 5 using two 6-sided dice? | Rotate the image below $90^{\circ}$ counterclockwise and reflect it across a horizontal line. | Find the factors: $2 x^{2}+7 x+3$ | Find the roots and maximum of the quadratic equation below. $y=3(x-4)^{2}-3$ |
| DOK 2 <br> Example | List the measurements of three different rectangular prisms that each has a surface area of 20 square units. | What value(s) have a $1 / 12$ probability of being rolled as the sum of two 6 -sided dice? | List three sequences of transformations that take preimage ABCD to image $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$. | Fill in the blank with integers so that the quadratic expression is factorable. $x^{2}+\ldots x+4$ | Create three equations for quadratics in vertex form that have roots at 3 and 5 but have different maximum and/or minimum values. |
| DOK 3 <br> Example | What is the greatest volume you can make with a rectangular prism that has a surface area of 20 square units? | Fill in the blanks to complete this sentence using the whole numbers 1 through 9, no more than one time each. <br> Rolling a sum of $\qquad$ on two $\qquad$ -sided dice is the same probability as rolling a sum of $\qquad$ on two $\qquad$ sided dice. | What is the fewest number of transformations needed to take pre-image $A B C D$ to image $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ ? <br> Pre-Image <br> Image | Fill the blank by finding the largest and smallest integers that will make the quadratic expression factorable. $2 x^{2}+3 x+$ | Create a quadratic equation with the largest maximum value using the whole numbers 1 through 9, no more than one time each. $y=-\square(x-\square)^{2}+\square$ |

## ROBERT KAPLINSKY

