Implementing Problem-Based Learning

ROBERT KAPLINSKY

DOUBLE-DOUBLE CHEESEBURGER 175 HAMBURGER FRENCH FRIES SHAKES 150 105 155 COKE Clabsce SEVEN-UP ROOT BEER DR PEPPER LEMONADE ICEDTEA
 $\begin{array}{ll}\text { MIILK } & 70 \\ \text { COFFEE } & 70\end{array}$
 OPEN 10:30 a.m. to 1:00 a.m. Fri. and Sat. until 1:30 a.m.

YOUR GUESI NUMGER IS 98

IN-N=OUT BURGER LAS VEGAS EASTERN

Cashler: SAM GUEST \#: 98

Counter-Eat In
Dblobl
98 Meat Pty XChz
2.65
88.20

Counter-Eat In
TAX 7.508
90.85

Amount Due
6.81

CASH TENDER
97.66

Chaneo
$\$ 97.66$
$\$.00$
2004-10-31
$8: 21$ PM
THANK YOU:

Cashier: SAM

GLEST
H: 98

Counter-Eat In

Dblobl
98 Meat Pty XChz

$$
\begin{array}{r}
2.65 \\
88.20
\end{array}
$$

Counter-Eat In
IAX $7,50 \mathrm{x}$ 90.85

Amount Due
6.81
97.66

CASH TENDER
$\$ 97.66$ $\$.00$
2004-10-31

$$
8: 21 \text { PM }
$$

		¢
Hamburger w/Onion	243	390
Cheeseburger w/Onion	268	480
Double-Double w/Onion	330	670

- Focus

- Rigor

Application

Procedural Skill and Fluency

Conceptual

 Understanding

Application

Procedural Skill and Fluency

Conceptual Understanding

Application

Procedural Skill
Conceptual and Fluency

Understanding

Layers	Cost
1	$\$ 1.75$
2	$\$ 2.65$
3	$\$ 3.55$
4	$\$ 4.45$
\cdot	\cdot
\cdot	\cdot
20	$\$ 18.85$
\cdot	\cdot
\cdot	\cdot
100	$\$ 90.85$
\cdot	\cdot
\cdot	\cdot
N	$\$ 1.75+(\mathrm{N}-1)^{*} \$ 0.90$

Application

Procedural Skill
Conceptual and Fluency

Understanding

Standards for Mathematical Practice

1. Make sense of problems and persevere in solving them.

Standards Is this the practice same as 100 ing them. cheeseburgers?

Standards Is this the Practice same as 100 ing them. cheeseburgers?

How do I figure
out how much a layer cost?

Standards for Mathematical Practice

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.

Standards for Mathematical Practice

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.

$$
\$ 1.75+0.9 n
$$

Standards for Mathematical Practice

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.

$$
\$ 1.75+0.9 x
$$

Standards for Mathematical Practice

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.

$$
\begin{gathered}
\$ 1.75+0.9 \text { 准 } \\
\$ 1.75+0.9(n-1)
\end{gathered}
$$

Standards for Mathematical Practice

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.

What is your conclusion?
A 100×100 at in-n-out cost $\$ 90.85$. To solve that, you start by subtracting the price of a cheeseburger from a double double. The answer $(.90)$ is the price of a patty and cheese slice. You multiply $(.90)$ by one less patty than what you want. $(x-1)$, and you add the price of a cheeseburger (1.75). You end up with the eq. $[y=.90(x-1)+1.75$.].
For the 100×100, you plug in 100 to the (x) and you end UP with $\$ 90.85$.

$$
\begin{aligned}
& \text { With } \$ 90.85 \\
& {\left[\begin{array}{l}
y=.90(100-1)+1.75 \\
y=89.10+1.75 \\
y=90.85
\end{array}\right]}
\end{aligned}
$$

Standards for Mathematical Practice

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.

$\$ 1.75+0.9(n-1)$

$\$ 1.75+0.9(n-1)$

Standards for Mathematical Practice

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.

Standards for Mathematical Practice

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.

Standards for Mathematical Practice

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
bun + produce + meat + cheese + meat + cheese $=\$ 2.65$
bun + produce + meat + cheese + meat + cheese $=\$ 2.65$
bun + produce + meat + cheese
$=\$ 1.75$
bun + produce + meat + cheese + meat + cheese $=\$ 2.65$
bun + produce + meat + cheese
$=\$ 1.75$
meat + cheese $=\$ 0.90$

Standards for Mathematical Practice

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

Problem Based Learning and 3 Student Questions

-When will I ever use this?

Problem Based Learning and 3 Student Questions

-When will I ever use this? -Why does it work?

Problem Based Learning and 3 Student Questions

-When will I ever use this? -Why does it work? .How do I do it?

TICNET BOOTR

25TICREIS= $\$ 10.00$ 50 TICKETS: $\$ 2500$

 20 TICRETS: 550.00
 HAVE FUN

The Reality

- What does "best" mean?
- 120 tickets for $\$ 50$ is "best" because you get the most tickets
- 1 ticket for $\$ 0.50$ is "best" because you spend the least amount of money

The Reality

- What does "best" mean?
- 120 tickets for $\$ 50$ is "best" because you get the most tickets
- 1 ticket for $\$ 0.50$ is "best" because you spend the least amount of money
- "What do you need to know to solve the problem?"
- How many tickets will we use?
- How long will we be staying there?
- How many people are we going with?
- How many tickets do the rides cost?

The Reality

- What does "best" mean?
- 120 tickets for $\$ 50$ is "best" because you get the most tickets
- 1 ticket for $\$ 0.50$ is "best" because you spend the least amount of money
- "What do you need to know to solve the problem?"
- How many tickets will we use?
- How long will we be staying there?
- How many people are we going with?
- How many tickets do the rides cost?
- The problem solving process didn't go like I expected
- Once they started working, they had no idea what to do.
- They didn't realize that they could buy multiple sets of tickets.
- They did not use unit rates.

25 tickets is better because its cheap.

I think 25 is way better because you save more monty and get more tickets
the best deal would be 25 tickets because you can get 5 more then the 120 deal, also would better so tickets by less money.
spend more for less.

The Best deal is to buy 25 tickets 5 times and you would get a total 0 \$ $\$ 50.00$. This is the best deal because it is cheaper than 120 tickets for 50 dollars. I would get 125 tickets for $\$ 50.00$ which is a better deal than 120 tickets for 50 dollars because I save $\$ 5$ and get 5 more tidcets for the same price.

The Four C's

- Communication

The Four C's

- Communication - Curiosity

- 3.MD. 1 - Tell and write time to the nearest minute and measure time intervals in minutes. Solve word problems involving addition and subtraction of time intervals in minutes.
- 4.MD. 2 - Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, mas'ses of objects, and money.

SS With the zohan
JONES
Y JULY 11

- 5.NBT. 7 Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.
- 6.G. 4 - Represent threedimensional figures using nets made up of rectangles and triangles, and use the nets to find the surface area of these figures.
7.G.6 - Solve real-world and mathematical problems involving area, volume and surface area.

- 8.G.9 - Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and mathematical problems.
- G-MG. 1 - Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).

- G-SRT. 8 - Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.
- G-GPE. 7 - Use coordinates torameful compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula.

No Retina Display
his mation. Obama Calls Wall Street $\$ 28.4$ biluon in bonuses as
economy was spinning out
control and the gonernme

Retina Display

- A-CED. 1 - Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.
- F-IF.7a - Graph linear and quadratic functions and show intercepts, maxima, and minima.

- G-c0. 6 Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure.

The Four C's

- Communication
- Curiosity
- Critical Thinking

Problem Solving Framework

- Inspired by Geoff Krall's resources at emergentmath.com

Solving Real-World Geometry Problems

High School

- G-MG. 1 - Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).
- G-GMD. 3 - Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.

Middle School

- 8.G. 9 Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and mathematical problems.
-7.G.6 - Solve real-world and mathematical problems involving area, volume and surface area of two- and threedimensional objects.
-6.G.2 -Apply the formulas $V=I$ whand V $=b h$ to find volumes of right rectangular prisms with fractional edge lengths in the context of solving real-world and mathematical problems.

Elementary School

- 5.MD. 5 - Relate volume to the operations of multiplication and addition and solve real world and mathematical problems involving volume.
- 4.MD. 3 - Apply the area and perimeter formulas for rectangles in real world and mathematical problems
- 3.MD.7d - Find areas of rectilinear figures by decomposing them into non-overlapping rectangles and adding the areas of the non-overlapping parts, applying this technique to solve real world problems.
- 2.MD. 1 - Measure the length of an object by selecting and using appropriate tools such as rulers, yardsticks, meter sticks, and measuring tapes.
- 1.MD. 2 - Express the length of an object as a whole number of length units.
- K.MD. 1 - Describe measurable attributes of objects, such as length or weight. Describe several measurable attributes of a single object.

The Four C's

- Communication
- Curiosity
- Critical Thinking
- Content Knowledge

PROBLEM- • How often do teachers do BASED problem-based learning?

LGARNING

FAQ

PROBLEM- • How often do teachers do problem-based learning?
AFARN/NG • How long do problem based FAQ lessons take?

PROBLEM- • How often do teachers do problem-based learning?

- How long do problem based lessons take?
- Do teachers use problem-based lessons to introduce a topic or after you've already taught it?

PROBLEM- • How often do teachers do

- How long do problem based lessons take? problem-based learning?
- Do teachers use problem-based lessons to introduce a topic or after you've already taught it?
- How is problem-based learning assessed?

PROBLEM- • How often do teachers do

- How long do problem based lessons take?
FAQ problem-based learning?
- Do teachers use problem-based lessons to introduce a topic or after you've already taught it?
- How is problem-based learning assessed?
- How much time does it take to create a problem-based lesson?

Problem-Based Lesson Resources

- My lessons: http://www.robertkaplinsky.com/lessons
- Dan Meyer: http://threeacts.mrmeyer.com
- Andrew Stadel: http://tinyurl.com/mrstadel
- Geoff Krall: http://tinyurl.com/PrBLmaps
- Nathan Kraft: http://tinyurl.com/mrkraft
- Mathalicious: http://www.mathalicious.com
- Yummy Math: http://www.yummymath.com
- 101 Questions: http://www. 101 qs.com

Why Choose Us?

Lessons

Robert graduated from University of
California, Los Angeles (UCLA) with a Bachelors of Science in Mathematics. He has taught mathematics to students at the elementary, middle, and high school levels. As an instructor for UCLA, he also teaches math content courses to teachers.

How Can We Water All Of The Grass?

How Much Money IS That?!

Hom
Lessons
คพญロ

Lessons Blog Speaking \& Writing

Why Choose Us?Math content expert

Robert graduated from University of
California, Los Angeles (UCLA) with a
Bachelors of Science in Mathematics. He has taught mathematics to students at the elementary, middle, and high school levels. As an instructor for UCLA, he also teaches math content courses to teachers.

Lessons

How Can We Water All Of The Grass?

How Much Money IS That?!

Math content
expert

Robert graduated from University of
California, Los Angeles (UCLA) with a Bachelors of Science in Mathematics. He has taught mathematics to students at the elementary, middle, and high school levels. As an instructor for UCLA, he also teaches math content courses to teachers.

Lessons

How Can We Water All Of The Grass?

How Much Money IS That?!

Math content expert

Robert graduated from University of
California, Los Angeles (UCLA) with a Bachelors of Science in Mathematics. He has taught mathematics to students at the elementary, middle, and high school levels. As an instructor for UCLA, he also teaches math content courses to teachers.

Lessons

How Can We Water All Of The Grass?

How Much Money IS That?!

Math content
expert

Robert graduated from University of
California, Los Angeles (UCLA) with a
Bachelors of Science in Mathematics. He has taught mathematics to students at the elementary, middle, and high school levels. As an instructor for UCLA, he also teaches math content courses to teachers.

Lessons

How Can We Water All Of The Grass?

How Much Money IS That?!

Math content
expert

Robert graduated from University of
California，Los Angeles（UCLA）with a
Bachelors of Science in Mathematics．He has taught mathematics to students at the elementary，middle，and high school levels．As an instructor for UCLA，he also teaches math content courses to teachers．

Lessons

How Can We Water All Of The Grass？

How Much Money IS That？！
Home Lessons Blog Speaking Services Beliefs About Contact
All 2nd 3rd 4th 5th 6th 7th 8th Algebra Functions Geometry Modeling Numb \& Quant Stats \& Prob

How Can We Water All Of The Grass?

How Much Money IS That?!

All 2nd 3rd 4th 5th 6th 7th 8th Algebra Functions Geometry Modeling Numb \＆Quant Stats \＆Prob

How Can We Water All Of The Grass？

How Much Money IS That？！

Robert Kaplinsky＇s Problem－Based Lessons
File Edit View Insert Format Data Tools Help All changes saved in Drive
E
あに 『 「
S \％ 123
Arial
10
$\mathrm{B} \quad \overline{5} \quad \mathrm{~A}$
λ 。 田
田 － \perp Till Σ

Task Name
How Can We Water All Of The Grass？
How Much Money IS That？！
How Much Money Should Dr．Evil Demand？
How Tall Is Mini－Me？
How Did They Make Ms．Pac－Man？
Which Ticket Option Is The Best Deal？
How Far Apart Are The Freeway Exits？
Do We Have Enough Paint？
How Many Stars Are There In The Universe？
What Rides Can You Go On？
Do You Have Enough Money？
Which Bed Bath \＆Beyond Coupon Should You Use？
Is Gas Cheaper With Cash Or Credit Card？
Where＇s The Nearest Toys R Us？
How Sharp Is The iPhone 5＇s Retina Display？
When Should She Take Her Medicine？
How Biq Are Sunspots？
What Michael＇s Coupon Should I Use？
Is It Cheaper To Pay Monthly or Annually？
How Biq Is The 2010 Guatemalan Sinkhole？
How Can You Win Every Prize At Chuck E．Cheese＇s？
How Many Royal Flushes Will You Get？
How Much Does The Paint On A Space Shuttle Weigh？
How Did Motel 6 Go From $\$ 6$ to $\$ 66$ ？
How Much Does The Aluminum Foil Prank Cost？
How Many Laps Is A 5k Race？
Which Toilet Uses Less Water？
How Did Someone Get A \＄103，000 Speeding Ticket In Finland？ Which Pizza Is A Better Deal？
How Biq Is The World＇s Larqest Deliverable Pizza？
How Many Sheets Do You Need To Break Out Of Prison？
Do Hybrid Cars Pay For Themselves？
How Many Hot Dogs Did They Eat？！
How Much Purple Ribbon Will You Need？ Are We There Yet？
Which Chinese Food Coupon Should I Use？
How Biq Is The Vehicle That Uses Those Tires？
Where Would The Angry Birds Have Landed？
How Many Movies Can You See In One Day？
Which Carrots Should You Buy？
How Fast Can You Throw A Baseball？

B	C	D	E	F	
Concept／Skill	Standard 1	Standard 2	Standard 3	Standard 4	St
Circles，Pythagorean Theorem，trigonometric ratios	7．G．4	8．G． 7	G－SRT． 8	G－MG． 1	G
Volume of rectangular prism	5．MD． 3	5．MD． 4	5．MD． 5	5．MD．5b	5
Exponential Growth	N－RN． 2	A－SSE． 1	A－SSE．3c	A－SSE． 4	A－F
Scale and Dividing Decimals	5．NF． 5	5．NF．5a	5．NF．5b	6．NS． 3	
Transformations（Rotations，Reflections，and Translations）	8．G． 1	8．G． 2	8．G． 3	8．G． 4	G
Unit Rates and Ratios	$6 . R P .2$	6. RP． 3	6．RP．3a	6．RP．3b	
Fractions on a Number Line and Subtracting Fractions	3．NF． 2	3．NF．2b	4．NF． 2	4．NF．3a	4.1
Area	3．MD． 5	3．MD． 6	3．MD． 7		
Scientific Notation	8．EE． 3	8．EE． 4			
Inequalities and Measurement	2．MD． 1	6．NS．7a	6．NS．7b		
Money	2．MD． 8				
Percent Discount	7．RP． 3				
Percent Discount	7．RP． 3				
Pythagorean Theorem（Distance in coordinate system）	8．G．8	G－SRT． 8	G－GPE． 7		
Pythagorean Theorem（Length of a side）	8．G． 7	G－SRT． 8	G－GPE． 7		
Operations with Time Intervals	4．MD． 2				
Converting Units，Proportions，and Scientific Notation	5．MD． 1	7．RP． 2	7．G． 4	8．EE． 4	G
Percent Discount	7．RP． 3	A－CED． 3			
Decimal Operations and／or Systems of Equations	5．NBT． 7	8．EE．8c	A－CED． 3	A－REI． 11	F
Volume of Cylinder	5．MD． 3	5．MD． 4	5．MD． 5	8．G． 9	G－
Decomposing Numbers and／or Systems of Equations	2．NBT． 7	3．NBT． 2	3．NBT． 3	8．EE．8c	A
Probability	7．SP． 5	7．SP． 6	7．SP． 7	S－MD． 5	S
Surface Area	6．G．4	7．G．6	8．G． 7	G－MG． 1	G
Percent Increase and Compound Interest	7．RP． 3	A－SSE．1b	F－BF． 1	F－IF．8b	F
Surface Area and Unit Rates	6．G． 4	6．RP． 2	6．RP． 3	7．G． 6	
Perimeter	4．MD． 3				
Systems of Equations／Inequalities	8．EE．8c	A－CED． 3	A－REI． 11	F－BF． 1	
Linear Equations	A－CED． 2	F－BF． 1	F－IF． 4	F－IF． 6	
Area or Circle，Square，and Unit Rates	3．MD． 5	3．MD． 6	3．MD． 7	4．MD． 3	6.
Area of Square	3．MD． 5	3．MD． 6	3．MD． 7	4．NBT． 3	4
Integer Operations	5．NBT． 6				
Systems of Equations or Rates	$6 . R P .2$	6．RP． 3	8．EE．8c	A－CED． 3	F
Linear and Quadratic Functions	8．F． 3	8．F． 4	F－BF． 1	F－BF． 2	F－
Perimeter \＆Circumference	3．MD． 8	4．MD． 3	7．G． 4		
Adding Times	3．MD． 1	4．MD． 2			
Percent Discount	7．RP． 3				
Ratio and Proportions	7．RP． 2				
Create Equation From Quadratic Graph	A－CED． 1	F－BF． 1	F－IF． 4	F－IF．7a	F－
Adding Times	3．MD． 1	4．MD． 2			
Unit Rates	$6 . \mathrm{RP} .1$	6．RP． 2	6．RP． 3		
Converting Units and Unit Rates	5．MD． 1	6．RP． 2			

