Real-World

 Problem-Based Learning Using Perplexing TasksROBERT KAPLINSKY

DOUBLE-DOUBLE

2004-10-31

YOUR GUEST NUMBER IS
98

$$
\begin{aligned}
& \text { IN-N-OUT BURGER LAS VEGAS EASTERN } \\
& \begin{array}{l}
2004=10-31
\end{array} \\
& 1651598 \\
& 8: 21
\end{aligned}
$$

Cashier: SAM

GLEEST
 ```#: 98```

Counter-Eat In

 Dblobl98 Neat Pty XChz
2.65
88.20

Counter-Eat In
TAX 7.508
90.85

Amount Due
6.81
97. 66

CASH TENOER
Change
$\$ 97.66$
$\$.00$
$2004-10-31$

Cashier: SAM

GLEST
 H: 98

Counter-Eat In

DblDbl
98 Meat Pty XChz

$$
\begin{array}{r}
2.65 \\
88.20
\end{array}
$$

Counter-Eat In
IAX $7,50 \mathrm{x}$ 90.85

Amount Due

$$
\begin{array}{r}
6.81 \\
97.66
\end{array}
$$

CASH TENDER

$\$ 97.66$ $\$.00$
2004-10-31

$$
8: 21 \mathrm{PM}
$$

		¢
Hamburger w/Onion	243	390
Cheeseburger w/Onion	268	480
Double-Double w/Onion	330	670

Layers	Cost
1	$\$ 1.75$
2	$\$ 2.65$
3	$\$ 3.55$
4	$\$ 4.45$
\cdot	\cdot
\cdot	\cdot
20	$\$ 18.85$
\cdot	\cdot
\cdot	\cdot
100	$\$ 90.85$
\cdot	\cdot
\cdot	N
N	

bun + produce + meat + cheese + meat + cheese $=\$ 2.65$
bun + produce + meat + cheese
$=\$ 1.75$
meat + cheese $=\$ 0.90$

The Reality

- Students needed guidance to figure out a layer's cost
- Not every class is ready to go straight to 100×100
- Common wrong answers included:
- $\$ 175.00(\$ 1.75 \times 100$ cheeseburgers)
- \$132.50 (\$2.65 x 50 Double-Doubles)
- Students had equations that had more than X patties
- Students were surprised to see three different equations:
- Starting with a Double-Double
- Starting with a cheeseburger
- Starting with produce and bun only

STUDENT WORK

The Four C's

- Communication - Curiosity
- 3.MD. 1 - Tell and write time to the nearest minute and measure time intervals in minutes. Solve word problems involving addition and subtraction of time intervals in minutes.
- 4.MD. 2 - Use the four operations to solve word problems involving distances, intervals of time, liquid

I FIST way volumes, mas'sés of objects, and money.

ESS WITH THE ZOHAN
JONES
Y JULY 11

- 5.NBT.7 Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.
- 6.G. 4 - Represent threedimensional figures using nets made up of rectangles and triangles, and use the nets to find the surface area of these figures.
7.G.6-Solve real-world and mathematical problems involving area, volume and surface area.
- 8.G.9-Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and mathematical problems.
- G-MG. 1 - Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).
- G-SRT. 8 - Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.
- G-GPE. 7 - Use coordinates tonuses compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula.

No Retina Display
${ }_{\text {hal Edition. Obama Calls }}$ Wall Street - $\begin{aligned} & \text { stos., bituon in bonuses as } \\ & \text { control and the ginning out }\end{aligned}$

Retina Display

- A-CED. 1 - Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.
- F-IF.7a - Graph linear and quadratic functions and show intercepts, maxima, and minima.

1. G-C0. 6 Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure.

6.RP. 2 - Understand the concept of a unit

 rate

The Four C's

- Communication
- Curiosity
- Critical Thinking

Problem Solving Framework

- Inspired by Geoff Krall's resources at emergentmath.com

What problem are you trying to figure out?

The Four C's

- Communication
- Curiosity
- Critical Thinking
- Content Knowledge

PROBLEM- • How often do teachers do BASED

 ■ =ARNNG FAQ
Problem-Based Lesson Resources

- My lessons: http://www.robertkaplinsky.com/lessons
- Dan Meyer: http://threeacts.mrmeyer.com
- Andrew Stadel: http://tinyurl.com/mrstadel
- Geoff Krall: http://tinyurl.com/PrBLmaps
- Nathan Kraft: hitip://tinyurl.com/mrkraft
- Mathalicious: http://www.mathalicious.com
- Yummy Math: http://www.yummymath.com
- 101 Questions: http://www. 101 qs.com

Why Choose Us?

Math content expert

Robert graduated from University of
California, Los Angeles (UCLA) with a Bachelors of Science in Mathematics. He has taught mathematics to students at the elementary, middle, and high school levels. As an instructor for UCLA, he also teaches math content courses to teachers.

Lessons

How Can We Water All Of The Grass?

How Much Money IS That?!
All 2nd 3rd 4th 5th 6th 7th 8th Algebra Functions Geometry Modeling Numb \& Quant Stats \& Prob

How Can We Water All Of The Grass?

How Much Money IS That?!

Robert Kaplinsky's Problem-Based Lessons
File Edit View Insert Format Data Tools Help All changes saved in Drive
두
\$ $\% \quad 123$
Arial
10
$\mathrm{B} \quad I \quad \mathrm{~A}$

- 田
 Σ

Task Name

How Can We Water All Of The Grass?
How Much Money IS That?!
How Much Money Should Dr. Evil Demand?
How Tall Is Mini-Me?
How Did They Make Ms. Pac-Man?
Which Ticket Option Is The Best Deal?
How Far Apart Are The Freeway Exits?
Do We Have Enough Paint?
How Many Stars Are There In The Universe?
What Rides Can You Go On?
Do You Have Enough Money?
Which Bed Bath \& Bevond Coupon Should You Use?
Is Gas Cheaper With Cash Or Credit Card?
Where's The Nearest Toys R Us?
How Sharp Is The iPhone 5's Retina Display?
When Should She Take Her Medicine?
How Biq Are Sunspots?
What Michael's Coupon Should I Use?
Is It Cheaper To Pay Monthly or Annually?
How Biq Is The 2010 Guatemalan Sinkhole?
How Can You Win Every Prize At Chuck E. Cheese's?
How Many Royal Flushes Will You Get?
How Much Does The Paint On A Space Shuttle Weigh?
How Did Motel 6 Go From $\$ 6$ to $\$ 66$?
How Much Does The Aluminum Foil Prank Cost?
How Many Laps Is A 5k Race?
Which Toilet Uses Less Water?
How Did Someone Get A \$103,000 Speedinq Ticket In Finland? Which Pizza Is A Better Deal?
How Biq Is The World's Larqest Deliverable Pizza?
How Many Sheets Do You Need To Break Out Of Prison?
Do Hybrid Cars Pay For Themselves?
How Many Hot Dogs Did They Eat?!
How Much Purple Ribbon Will You Need? Are We There Yet?
Which Chinese Food Coupon Should I Use?
How Biq Is The Vehicle That Uses Those Tires?
Where Would The Angry Birds Have Landed?
How Many Movies Can You See In One Day?
Which Carrots Should You Buy?
How Fast Can You Throw A Baseball?

B	C	D	E	F	
Concept / Skill	Standard 1	Standard 2	Standard 3	Standard 4	St
Circles, Pythagorean Theorem, trigonometric ratios	7.G. 4	8.G. 7	G-SRT. 8	G-MG. 1	G
Volume of rectangular prism	5.MD. 3	5.MD. 4	5.MD. 5	5.MD.5b	5.1
Exponential Growth	N-RN. 2	A-SSE. 1	A-SSE.3c	A-SSE. 4	A-F
Scale and Dividing Decimals	5.NF. 5	5.NF.5a	5.NF.5b	6.NS. 3	
Transformations (Rotations, Reflections, and Translations)	8.G. 1	8.G. 2	8.G. 3	8.G. 4	G-
Unit Rates and Ratios	6.RP. 2	$6 . R P .3$	6.RP.3a	6.RP.3b	
Fractions on a Number Line and Subtracting Fractions	3.NF. 2	3.NF.2b	4.NF. 2	4.NF.3a	4.1
Area	3.MD. 5	3.MD. 6	3.MD. 7		
Scientific Notation	8.EE. 3	8.EE. 4			
Inequalities and Measurement	2.MD. 1	6.NS.7a	6.NS.7b		
Money	2.MD. 8				
Percent Discount	7.RP.3				
Percent Discount	7.RP.3				
Pythagorean Theorem (Distance in coordinate system)	8.G. 8	G-SRT. 8	G-GPE. 7		
Pythagorean Theorem (Length of a side)	8.G. 7	G-SRT. 8	G-GPE. 7		
Operations with Time Intervals	4.MD. 2				
Converting Units, Proportions, and Scientific Notation	5.MD. 1	7.RP. 2	7.G. 4	8.EE. 4	G
Percent Discount	7.RP. 3	A-CED. 3			
Decimal Operations and/or Systems of Equations	5.NBT. 7	8.EE.8c	A-CED. 3	A-REI. 11	F-
Volume of Cylinder	5.MD. 3	5.MD. 4	5.MD. 5	8.G. 9	G
Decomposing Numbers and/or Systems of Equations	2.NBT. 7	3.NBT. 2	3.NBT. 3	8.EE.8c	A-C
Probability	7.SP. 5	7.SP. 6	7.SP. 7	S-MD. 5	S-
Surface Area	6.G. 4	7.G. 6	8.G.7	G-MG. 1	G
Percent Increase and Compound Interest	7.RP. 3	A-SSE. 1b	F-BF. 1	F-IF.8b	F-L
Surface Area and Unit Rates	6.G. 4	6.RP. 2	6.RP. 3	7.G. 6	
Perimeter	4.MD. 3				
Systems of Equations/Inequalities	8.EE.8c	A-CED. 3	A-REI. 11	F-BF. 1	
Linear Equations	A-CED. 2	F-BF. 1	F-IF. 4	F-IF. 6	
Area or Circle, Square, and Unit Rates	3.MD. 5	3.MD. 6	3.MD. 7	4.MD. 3	6.7
Area of Square	3.MD. 5	3.MD. 6	3.MD. 7	4.NBT. 3	4.1
Integer Operations	5.NBT. 6				
Systems of Equations or Rates	$6 . R P .2$	6.RP. 3	8.EE.8c	A-CED. 3	F-E
Linear and Quadratic Functions	8.F. 3	8.F. 4	F-BF. 1	F-BF. 2	F-
Perimeter \& Circumference	3.MD. 8	4.MD. 3	7.G. 4		
Adding Times	3.MD. 1	4.MD. 2			
Percent Discount	7.RP. 3				
Ratio and Proportions	7.RP. 2				
Create Equation From Quadratic Graph	A-CED. 1	F-BF. 1	F-IF. 4	F-IF.7a	F-L
Adding Times	3.MD. 1	4.MD. 2			
Unit Rates	6.RP. 1	6.RP. 2	6.RP. 3		
Converting Units and Unit Rates	5.MD. 1	6.RP. 2			

