

San Marcos USD

JUNE 16-18, 2014

DOUBLE-DOUBLE

2004-10-31

YOUR GUEST NUMBER IS
98

$$
\begin{aligned}
& \text { IN-N=OUT BURGER LAS VEGAS EASTERN } \\
& 2004=10-31 \\
& 1651598 \\
& 8: 21 \text { PM }
\end{aligned}
$$

Cashier: SAM

GLEST
 \#: 98

Counter-Eat In

 DblDbl98 Meat Pty KChz
2.65
88.20

Counter-Eat In
TAX 7.50 x
90.85

Amount Due
6.81

CASH TENDEA
Change
$\$ 97.66$
$\$.00$
$2004-10-31$

Cashier: SAM

GLEST
 H: 98

Counter-Eat In

Dblobl

98 Meat Pty XChz

2.65
88.20

Counter-Eat In TAX 7,50x 90.85

Amount Due
6.81
97.66

CASH TENOER Change
$\$ 97.66$ $\$.00$

2008-10-31

$$
8: 21 \text { PM }
$$

		¢
Hamburger w/Onion	243	390
Cheeseburger w/Onion	268	480
Double-Double w/Onion	330	670

Layers	Cost
1	$\$ 1.75$
2	$\$ 2.65$
3	$\$ 3.55$
4	$\$ 4.45$
\cdot	\cdot
\cdot	\cdot
20	$\$ 18.85$
\cdot	\cdot
\cdot	\cdot
100	$\$ 90.85$
\cdot	\cdot
\cdot	$\$ 1.75+(\mathrm{N}-1)^{*} \$ 0.90$
N	

bun + produce + meat + cheese + meat + cheese $=\$ 2.65$
bun + produce + meat + cheese
= \$1.75
meat + cheese $=\$ 0.90$

The Reality

- Students needed guidance to figure out a layer's cost
- Not every class is ready to go straight to 100×100
- Common wrong answers included:
- $\$ 175.00$ ($\$ 1.75 \times 100$ cheeseburgers)
- \$132.50 (\$2.65 x 50 Double-Doubles)
- Students had equations that had more than X patties
- Students were surprised to see three different equations:
- Starting with a Double-Double
- Starting with a cheeseburger
- Starting with produce and bun only
 NHA

Math Question

- Solve the problem on your own. Do not work or share your answer with anyone else.
- You will have 30 seconds to complete it.
- Write your answer down on a paper.
- Pay attention to the emotions you feel while solving the problem and write those emotions down as well.

$$
\begin{gathered}
\text { There are } 125 \\
\text { sheep and } 5 \text { dogs } \\
\text { in a flock. How old } \\
\text { is the shepherd? }
\end{gathered}
$$

Of the 32 students I interviewed...

- 75% of them gave me numerical responses
- 2 students calculated the answer to be $130(125+5)$
- 2 students calculated the answer to be 120 (125-5)
- 12 students calculated the answer to be $25(125 \div 5)$
- 0 students calculated the answer to be 625 (125×5)
- 4 students stated that they guessed their answer (90, 5,42 , and 50)
- 4 students tried to divide 125 by 5 but could not correctly implement the procedure

Takeaways

- Making sense of mathematics
- Intellectual autonomy
- Intellectual autonomy is about being able to think for yourself and not being dependent on others for the direction and control of one's thinking.

What Does the NHTSA Say?

Kev Statistics and Consumer Insights:

- Motor vehicle crashes are the leading cause of death for children age 1 through 12 years old. ${ }^{1}$

According to a NHTSA study, 3 out of 4 kids are not as secure in the car as they should be because their car seats are not being used correctly.

${ }^{1}$ Source: Based on the latest mortality data currently available from the CDC's National Center for Health Statistics.

- "because they have their child in the right seat"
- "because their car seats are not being used correctly"

IF YOUR CHILD IS IN THE RIGHT CAR SEAT.
Ad
council
VISIT SAFERCAR.GOV/THERIGHTSEAT

KNOW FOR SURE

IF YOUR CHILD IS IN THE RIGHT CAR SEAT.

VISIT SAFERCAR.GOV/THERIGHTSEAT

 NHTSA
WHAT IS THE • College readiness PURPOSE OF
 A K-12
 EDUGATION?
 - ACT National Curriculum
 Survey
 - Surveyed 9,937 educators

"Well" or "Very Well" Prepared for College

Source: http://www.act.org/research/policymakers/pdf/NCS-PolicySummary201 2.pdf

WHAT IS THE • College readiness PURPOSE OF
A K-12
EDUCATION?
- Career readiness
- Association of American Colleges and Universities survey
- Surveyed over 300 employers with at least 25 employees and many new hires

Critical thinking and
analytical reasoning skills
Analyzing and solving
complex problems
Communicating
effectively orally
and in writing
Applying knowledge and
skills to real-world setting
Working w/ numbers and
understanding statistics

WHAT ISN'T MATHEMATICAL MODEHNG?

- It is not modeling in the sense of, "I do; now you do."
- It is not modeling in the sense of using manipulatives to represent mathematical concepts.
- It is not modeling in the sense of a "model" being just a graph, equation, or function.
- It is not just starting with a real world situation and solving a math problem.
- It is not beginning with the mathematics and then moving to the real world.

PROBLEM- • How often do teachers do

 problem-based learning? lessons take?- Do teachers use problem-based lessons to introduce a topic or after you've already taught it?
- How is problem-based learning assessed?
- How much time does it take to create a problem-based lesson?

WHAT DOES IT LOOK LIKE...

- when students have procedural skill but not conceptual understanding or the ability to apply mathematics?
- when students struggle to process mathematics at a higher depth of knowledge?

How far apart are the exits on this freeway: Jct 90 and Jefferson Blvd?

The Four C's

- Communication - Curiosity
- 6.G. 4 - Represent threedimensional figures using nets made up of rectangles and triangles, and use the nets to find the surface area of these figures.
7.G.6 - Solve real-world and mathematical problems involving area, volume and surface area.
- 8.G.9 - Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and mathematical problems.
- G-GMD.3-Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.
- G-c0. 6 Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure.
- A-CED. 1 - Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.
- F-IF.7a - Graph linear and quadratic functions and show intercepts, maxima, and minima.
6.RP.2 - Understand the concept of a unit rate

The Four C's

- Communication
- Curiosity
- Critical Thinking

Problem Solving Framework

- Inspired by Geoff Krall's resources at emergentmath.com

The Four C's

- Communication
- Curiosity
- Critical Thinking
- Content Knowledge

Questioning Scenarios

- The activity begins with teachers in groups of three taking the roles of teacher, student, or observer.
- The individuals playing the role of teacher and student each receive a slip of paper describing their scenario.
- The individual playing the role of observer waits to record all of the teacher's questions to the student.
- Once the activity begins, the teacher will talk to the student in the context of the scenario they read about on the slips of paper.

What did you get for the area of the circle with a radius of 2 units?

Great. Do you have any questions?

What did you get for the area of the circle with a radius of 2 units?

Great. How did you get your answer?

The radius is 2 so I plugged it into 2 pi r and got 4 pi.

Depth of Knowledge

 -What?
Depth of Knowledge Examples

Perimeter

- DOK 1 - What is the perimeter of a rectangle with that measures 8 units by 4 units?
- DOK 2 - List the dimensions of a rectangle with a perimeter of 24 units.
- DOK 3 - Of all the rectangles with a perimeter of 24 units, which one has the most area?

Surface Area

- DOK 1 - What is the surface area of a rectangular prism that measures 8 units by 4 units by 3 units?
- DOK 2 - List the dimensions of a rectangular prism with a surface area of 20 square units.
- DOK 3-Of all the rectangular prisms with a surface area of 20 square units, which one has the most volume?

Depth of Knowledge

-What?

- How?
-Why?

DOK SORT

- You will be given six questions related to solving two-step equations.
- Work in groups to determine each question's depth of knowledge.
- Be prepared to give a justification for how you reached your conclusion.

Depth of Knowledge - Level One

What is the circle's circumference? $\pi \approx 3.14$

$$
C=\pi d \text { or } C=2 \pi r
$$

$$
A=\pi r^{2}
$$

70 This circular stage has a radius of 25 meters.

Which equation could be used to find the area of the stage in square meters?

A $\quad A=25 \pi$
B $\quad A=50 \pi$
C $\quad A=\pi \cdot 25^{2}$
D $\quad A=\pi \cdot 50^{2}$

72 The top part of this hat is shaped like a cylinder with a diameter of 7 inches.

Which measure is closest to the length of the band that goes around the outside of the hat?

A 10.1 inches
B 11.0 inches
C 22.0 inches
D 38.5 inches

Source: $6^{\text {th }}$ Grade CST Released Test Questions - http://www.cde.ca.gov/ta/tg/sr/documents/cstrtqmath6.pdf

Student Data Facts

- 396 seventh grade students were assessed
- 68.26\% correctly answered the circumference question
- 78.59% correctly answered the area question

Mathematics Preliminary Summative Assessment Blueprint

 Target Sampling Mathematics Grade 7-Table 6bAssessment Consortium

Claim	Content Category	Assessment Targets	DOK	Minimum \# Scored Tasks		Minimum \# Items per Item Type		Min/Max Number of Items
				CAT	PT/ECR	SR	CR	
		A. Analyze proportional relationships and use them to solve real-world and mathematical problems.	1,2	$p(9)=1.0$				
Cinnertiner		E. Draw, construct, and describe geometrical figures and describe the relationship between them.						
		F. Solve real-life and problems involvin area, surface area	$\begin{aligned} & \text { lath } \\ & \text { angl } \\ & \text { and } \end{aligned}$	matic mea olum	al ure,			
		problems involving angle measure, area, surface area, and volume.	1,2		0	2	1	5/8
		G. Use random sampling to draw inferences about a population.	1,2	$p(2)=1.0$				
		H. Draw informal comparative inferences about two populations.	1,2					
		I. Investigate chance processes and develop, use, and evaluate probability models.	1,2					

Depth of Knowledge - Level Two

Which circle is bigger? How do you know?
Circle A
Circle B

Area $=36$ units 2

$$
\begin{array}{cc}
C=\pi \cdot 2 \cdot r & A=\pi \cdot r^{2} \\
36 \approx 6.28 \cdot r & A \approx 3.14 \cdot 5.73^{2} \\
\frac{36}{6.28} \approx r & A \approx 3.14 \cdot 32.83 \\
5.73 \text { units } \approx r & A \approx 103.15 \text { units }^{2}
\end{array}
$$

Circumference $=36$ units

SBAC Constructed Response Rubric

- For full credit (2 points):
- Student reaches the correct conclusion. AND
- Student provides sufficient reasoning to support this conclusion.
- For partial credit (1 point):
- Student reaches the correct conclusion but does not provide sufficient reasoning to support this conclusion. OR
- Student does not reach the correct conclusion but provides reasoning to support this conclusion that contains a minor conceptual or computation error.

Video Facts

- Of the ten students interviewed:
-Ten correctly answered both of the DOK 1 questions.
- One earned two points on the DOK 2 question.
- Six earned one point on the DOK 2 question.
- Three earned zero points on the DOK 2 question.

Student Data Facts

- Of the 396 seventh grade students who were assessed, 12.12% earned two points on the DOK 2 question.
- 97.92% of the students who correctly answered the DOK 2 question also correctly answered both of the two DOK 1 questions.
- 10.61% of the students who correctly answered both of the two DOK 1 questions also correctly answered the DOK 2 question.

More Student Data Facts

- 28.28% of the students earned only one point.
- All of them earned one point by choosing Circle B and providing insufficient reasoning.
- 59.59\% of the students earned no points.

Assessing Deeper Understanding

Make the smallest difference using the numbers 1 through 9 no more than one time each.

Implementing Higher DOK Problems

- Attempt \#1: DOK 3 Subtracting Mixed Numbers
- Lesson learned

ORDER OF OPERATIONS

RECTANGLES: MAXIMIZING AREA

Directions: What is the greatest area you can make on a rectangle with a perimeter of 24 units?

Atiempi \#J: DOK 5 Area and rerimerer

- Lessons learned:
- Most of the $8^{\text {th }}$ graders struggled even with this problem.
- Would have been wiser to start with a DOK 1, then a DOK 2, and then this DOK 3 problem.

STUDENT WORK

Open Middle Problems

- Open middle problems require a higher depth of knowledge than most problems that assess procedural and conceptual understanding.
- They often have a "closed beginning" meaning that they all start with the same initial problem
- They often have a "closed end" meaning that they all end with the same answer
- They have an "open middle" meaning that there are multiple ways to approach and ultimately solve the problem

www.openmiddle.com

Problem-Based Lesson Resources

- Problem-based lesson search engine:

http://robertkaplinsky.com/prbl-search-engine/

- My lessons: http://www.robertkaplinsky.com/lessons
- Dan Meyer: http://threeacts.mrmeyer.com
- Andrew Stadel: http://tinyurl.com/mrstadel
- Geoff Krall: http://tinyurl.com/PrBLmaps
- Dan Meyer's TED talk: http://tinyurl.com/meyer-TED

How Many Sheets Do You Need To Break Out Of Prison?
Goperations with rationalinumiberso ENTE

Robert graduated from University of

Math content expert

California, Los Angeles (UCLA) with a Bachelors of Science in Mathematics. He has taught mathematics to students at the

Lessons elementary, middle, and high school levels. As

How Much Is One Third Of A Cup Of Butter?

How Do Skytypers Write Messages?

Robert Kaplinsky's Problem-Based Lessons
File Edit View Insert Format Data Tools Help All changes saved in Drive
두
\$ $\% \quad 123$
Arial
10
$\mathrm{B} \quad I \quad \mathrm{~A}$

- 田
 Σ

Task Name

How Can We Water All Of The Grass?
How Much Money IS That?!
How Much Money Should Dr. Evil Demand?
How Tall Is Mini-Me?
How Did They Make Ms. Pac-Man?
Which Ticket Option Is The Best Deal?
How Far Apart Are The Freeway Exits?
Do We Have Enough Paint?
How Many Stars Are There In The Universe?
What Rides Can You Go On?
Do You Have Enough Money?
Which Bed Bath \& Beyond Coupon Should You Use?
Is Gas Cheaper With Cash Or Credit Card?
Where's The Nearest Toys R Us?
How Sharp Is The iPhone 5's Retina Display?
When Should She Take Her Medicine?
How Biq Are Sunspots?
What Michael's Coupon Should I Use?
Is It Cheaper To Pay Monthly or Annually?
How Biq Is The 2010 Guatemalan Sinkhole?
How Can You Win Every Prize At Chuck E. Cheese's?
How Many Royal Flushes Will You Get?
How Much Does The Paint On A Space Shuttle Weigh?
How Did Motel 6 Go From $\$ 6$ to $\$ 66$?
How Much Does The Aluminum Foil Prank Cost?
How Many Laps Is A 5k Race?
Which Toilet Uses Less Water?
How Did Someone Get A \$103,000 Speeding Ticket In Finland? Which Pizza Is A Better Deal?
How Biq Is The World's Largest Deliverable Pizza?
How Many Sheets Do You Need To Break Out Of Prison?
Do Hybrid Cars Pay For Themselves?
How Many Hot Dogs Did They Eat?!
How Much Purple Ribbon Will You Need? Are We There Yet?
Which Chinese Food Coupon Should I Use?
How Biq Is The Vehicle That Uses Those Tires?
Where Would The Angry Birds Have Landed?
How Many Movies Can You See In One Day?
Which Carrots Should You Buy?
How Fast Can You Throw A Baseball?

B	c	D	E	F	
Concept / Skill	Standard 1	Standard 2	Standard 3	Standard 4	St
Circles, Pythagorean Theorem, trigonometric ratios	7.G. 4	8.G. 7	G-SRT. 8	G-MG. 1	G
Volume of rectangular prism	5.MD. 3	5.MD. 4	5.MD. 5	5.MD.5b	5.
Exponential Growth	N-RN. 2	A-SSE. 1	A-SSE.3c	A-SSE. 4	A-
Scale and Dividing Decimals	5.NF. 5	5.NF.5a	5.NF.5b	6.NS. 3	
Transformations (Rotations, Reflections, and Translations)	8.G. 1	8.G. 2	8.G. 3	8.G. 4	G
Unit Rates and Ratios	6.RP. 2	$6 . \mathrm{RP} .3$	6.RP.3a	6.RP.3b	
Fractions on a Number Line and Subtracting Fractions	3.NF. 2	3.NF.2b	4.NF. 2	4.NF.3a	4.
Area	3.MD. 5	3.MD. 6	3.MD. 7		
Scientific Notation	8.EE. 3	8.EE. 4			
Inequalities and Measurement	2.MD. 1	6.NS.7a	6.NS.7b		
Money	2.MD. 8				
Percent Discount	7.RP. 3				
Percent Discount	7.RP. 3				
Pythagorean Theorem (Distance in coordinate system)	8.G. 8	G-SRT. 8	G-GPE. 7		
Pythagorean Theorem (Length of a side)	8.G. 7	G-SRT. 8	G-GPE. 7		
Operations with Time Intervals	4.MD. 2				
Converting Units, Proportions, and Scientific Notation	5.MD. 1	7.RP. 2	7.G. 4	8.EE. 4	G
Percent Discount	7.RP. 3	A-CED. 3			
Decimal Operations and/or Systems of Equations	5.NBT. 7	8.EE.8c	A-CED. 3	A-REI. 11	F-
Volume of Cylinder	5.MD. 3	5.MD. 4	5.MD. 5	8.G.9	G
Decomposing Numbers and/or Systems of Equations	2.NBT. 7	3.NBT. 2	3.NBT. 3	8.EE.8c	A-
Probability	7.SP. 5	7.SP. 6	7.SP. 7	S-MD. 5	S-
Surface Area	6.G.4	7.G. 6	8.G. 7	G-MG. 1	G
Percent Increase and Compound Interest	7.RP. 3	A-SSE. 1b	F-BF. 1	F-IF.8b	F-
Surface Area and Unit Rates	6.G.4	6.RP. 2	6.RP. 3	7.G.6	
Perimeter	4.MD. 3				
Systems of Equations/Inequalities	8.EE.8c	A-CED. 3	A-REI. 11	F-BF. 1	
Linear Equations	A-CED. 2	F-BF. 1	F-IF. 4	F-IF. 6	
Area or Circle, Square, and Unit Rates	3.MD. 5	3.MD. 6	3.MD. 7	4.MD. 3	6.
Area of Square	3.MD. 5	3.MD. 6	3.MD. 7	4.NBT. 3	4.1
Integer Operations	5.NBT. 6				
Systems of Equations or Rates	6.RP. 2	6.RP. 3	8.EE.8c	A-CED. 3	F-
Linear and Quadratic Functions	8.F. 3	8.F. 4	F-BF. 1	F-BF. 2	F-
Perimeter \& Circumference	3.MD. 8	4.MD. 3	7.G. 4		
Adding Times	3.MD. 1	4.MD. 2			
Percent Discount	7.RP. 3				
Ratio and Proportions	7.RP. 2				
Create Equation From Quadratic Graph	A-CED. 1	F-BF. 1	F-IF. 4	F-IF.7a	F-L
Adding Times	3.MD. 1	4.MD. 2			
Unit Rates	6.RP. 1	6.RP. 2	6.RP. 3		
Converting Units and Unit Rates	5.MD. 1	6.RP. 2			

Google
 gl

Suloscribe to Lessons

Enter your email address below to receive emails whenever a new lesson is published.

Subscribe

Subscribe to Blog

Enter your email address below to receive emails whenever a new blog post is published.

Subscribe

Submit

The links below are the pages that are being searched by the search engine:

- 101 Questions
- Andrew Stadel
- Dan Meyer
- Dane Ehlert
- Emergent Math's Problem Based Curriculum Maps
- Estimation180
- Geoff Krall
m Feeling Lucky

Problem-Based Lesson Search Engine

This search engine searches all of the sites below to quickly help you find a problem-based lesson (also called 3-Act Task, mathematical modeling, or application problem):

The link belo

Problem-Based Fessons

101qs.com

Andrew Stadel

Dan Meyer

Mathalicious

Problem Based Curriculum Maps

JOURNAL

- Write a journal entry to reflect on what we have accomplished today.

San Marcos USD

JUNE 16-18, 2014

Height: 78 inches

Source: Andrew Stadel via www.estimation180.com

Height: 78 inches

Heights

 78 inches

Width:
56 inches

Depth: 18 inches

Sticky note

Recycled Self Stirk Notes Notas autoadhesivas reciclado Notes autoofllantes recyclés

- 18 pads / blocs
- 100 sheets per pad / hojas por bloc / f
- Total 1800 sheets/hojas / feuillets
- 3 in $\times 3$ in ($76,2 \mathrm{~mm} \times 76,2 \mathrm{~mm}$)

Dimensions: $5^{7 n} \times 5^{7 n}$

6TH GRADE PERFORMANC: TASK

CEREAL BOXES

A cereal company uses cereal boxes that are rectangular prisms The boxes have the dimensions shown.

- 12 inches high
- 8 inches wide
- 2 inches deep

The managers of the company want a new size for their cereal boxes. The new boxes have to be rectangular prisms. You will evaluate one box design the company proposed. Then you will create and propose your own design for the company.

Requirements for the new boxes:

- The new boxes have to use less cardboard than the

Determine the volume of the current cereal box with the dimensions 12 inches high, 8 inches wide, and 2 inches deep.
Find the volume, V, in cubic inches, of each box.
Volume of Original Box: $V=$ _ in ${ }^{3}$

2
Label the dimensions of the net for the current cereal box with dimensions 12 inches high, 8 inches wide, and 2 inches deep.

FIVE PRACTICES

Implementing the Five Practices

1. Anticipate potential student responses to the file cabinet problem.
2. Review the ten student work samples that represent students in your classroom.
3. Figure out which students you would have share their mathematical work.
4. Determine the order you would have those students present their work.
5. Decide on which connections you would emphasize between the students' work and mathematical ideas.

Setting Up The Problem

- What do you do when students ask for data/information I don't have, hadn't considered, or forgot to get?
- What do you do when students ask for information that is probably not important or that they don't actually need?

TICNET BOOT:

 12TICRETS=\$500 25 TICRETS $=\$ 10.00$ 50TCKEETS: 82500 20 TICRETS: 550.00 HANE FUNY

Does a hybrid car pay for itself?

Setting Up The Problem

- What do you do when students ask for data/information I don't have, hadn't considered, or forgot to get?
- What do you do when students ask for information that is probably not important or that they don't actually need?
- What do you do when students don't know what to write for what they know and don't know?
- What do you do when you ask for a guess and they don't know?
- What do you do when they don't ask you for information that they need to solve the problem?

Problem Solving Process

- What do you do when students don't use the strategy you anticipated they would use?

TICNET BOOT:

 12TICRETS=\$500 25 TICRETS $=\$ 10.00$ 50TCKEETS: 82500 20 TICRETS: 550.00 HANE FUNY

Problem Solving Process

- What do you do when students don't use the strategy you anticipated they would use?
- What do you do when a student comes up with a strategy for solving the problem that I do not understand?

Problem Solving Process

- What do you do when students don't use the strategy you anticipated they would use?
- What do you do when a student comes up with a strategy for solving the problem that I do not understand?
- What do you do when the answer we calculate does not match with the actual answer?
- What do you do when students get stuck during the problem solving process and are not sure what to do?

How much shorter are 20 layers of
 staggered
 pipe stacks?

Problem Solving Process

- What do you do when students don't use the strategy you anticipated they would use?
- What do you do when a student comes up with a strategy for solving the problem that I do not understand?
- What do you do when the answer we calculate does not match with the actual answer?
- What do you do when students get stuck during the problem solving process and are not sure what to do?
- What do you do when you ask students questions and few to no people are ready to respond?

Problem Solving Process

- What do you do when students don't use the strategy you anticipated they would use?
- What do you do when a student comes up with a strategy for solving the problem that I do not understand?
- What do you do when the answer we calculate does not match with the actual answer?
- What do you do when students get stuck during the problem solving process and are not sure what to do?
- What do you do when you ask students questions and few to no people are ready to respond?
- What do you do when the student conclusions are low quality and/or effort?

|||||||||||||||||||||||||||||||||||||||
 $1015773283 \quad 9456613028$

Also exchudes Starbucks
Also excludes Dyson vacuums ant Miele

 Plan Toys ${ }^{\oplus}$, Quinny ${ }^{\oplus}$, Svan ${ }^{\oplus}$, Teutonia ${ }^{\oplus}$, Under Armour ${ }^{\oplus}$, UPPAbaby ${ }^{\oplus}$, baby furniture, diapers, wipes, formula, baby food or portrait studio services.
 of ${ }^{5} 15$ or more.

BED BATH \&
 BEYON D

Beyond any store of its kind:
OFFICES: 650 LIBERTY AVENUE, UNION, NJ 07083

IA conclusion each conclusion Each Item is good for different Items
ange Chicken
Shicken Lo Mein
Cashew Nut Chicken
σ Pungent Chicken
Sweet \& Sour Chicken
Curry Chicken
Lemon Chicken
Vegetable Chicken
Mongolian Beef
Broccoli Beef
Pungent Beef
Sweet \& Sour Pork
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25

Eggplant with Garlic Sauce
5.25
5.25 5.25
σ Broccoli with Garlic Sauce 5.25
\checkmark String Bean with Garlic Sauce 5.25
Vegetable Delight 5.25
Bamboo Fungus Tofu 5.25
Shrimp with Asparagus 6.25
Shrimp with Lobster Sauce 6.25
\checkmark Fish Fillet with Szuchuan Sauce 6.25
\checkmark Fish Fillet with Black Bean Sauce6.25
Crab meat with Asparagus 6.25
Sweet \& Sour Shrimp 6.25

Free to fin chicken lomein
ifs peng al $\$ 25$ and not redeemable
on lung special dinner and
on nd special
party 1 rems
The 10\% capon is Best with high Prices and small orders is best with the free chicken lamerin or chessewonten

If the flem is 447 it is better to use the 20% offcoupon because

$$
\begin{aligned}
& 47-5=\$ 42 \text { oft } 47-20 \%=37.60 \\
& 5 \text { vs } 37.60 \\
& 23-5=18 \\
& \begin{array}{c}
\$ 5 \text { off } \\
18 \mathrm{vs} \\
18.40
\end{array} \\
& 23-20 \%=28.40
\end{aligned}
$$

You can use the 10% off when you pay 20-24.99 or more the freechicken Lomein when you pay $25-49.99$ or more and the free orange Chitin whengou pay 50 or more

Construction

- Pick two:

Cheap

Fast

High
Quality

Family

- Pick two:

Sanity

Kids or
Pets

Clean
House

Problem-Based Learning

- Pick two:

Minimal
Effort

Student-
Centered
Predictability
Learning

JOURNAL

- Write a journal entry to reflect on what we have accomplished today.

San Marcos USD

JUNE 16-18, 2014

Goals

- Supplementing Units
- Three components of rigor
- Procedural skill and fluency
- Conceptual understanding
- Application
-Depth of Knowledge

Cylindrical Volume

CCSS Content Standards

- CCSS 8.G.9 - Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and mathematical problems.
- CCSS G-GMD. 3 - Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.
- CCSS G-MG. 1 - Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).

$$
2
$$

Cylindrical Volume - DOK 1

- What is the volume of a cylinder that has a radius of 3 feet and a height of 3 feet?

Cylindrical Volume - DOK 2

- List two possible sets of dimensions for a cylinder that has a volume of 25π cubic meters.

Cylindrical Volume - DOK 3

- Using whole numbers only, provide the radius and height for 3 different tanks that hold between 110 and 115 cubic feet of water.

Source: Smarter Balanced Practice Test

Sinkhole Dimensions

- National Geographic: "60 feet (18 meters) wide and about 30 stories deep"
- Time Magazine: "runs some 200 ft . deep"
- CNN: "The 20-meter (about 66 feet) diameter sinkhole is about 30 meters (about 100 feet) deep."
- Slate: "A sinkhole, 65 feet across and 100 feet deep"

SLATESS ANSWER

- It's not clear whether cement is the best option, however. A 6,500-cubic-foot wad of concrete may serve to concentrate water runoff in other areas, leading to more sinkholes."

Probability

CCSS Content Standards

- CCSS 7.SP. 5 Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around $1 / 2$ indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event.

CCSS Content Standards

- CCSS 7.SP. 6 Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its longrun relative frequency, and predict the approximate relative frequency given the probability. For example, when rolling a number cube 600 times, predict that a 3 or 6 would be rolled roughly 200 times, but probably not exactly 200 times.

CCSS Content Standards

- CCSS 7.SP. 7 Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy.

CCSS Content Standards

- CCSS S-MD. 5 Weigh the possible outcomes of a decision by assigning probabilities to payoff values and finding expected values.
- CCSS S-MD. 6 Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator).
- CCSS S-MD. 7 Analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, pulling a hockey goalie at the end of a game).

Questions

- How many Royal Flushes would you expect?
- How many straight flushes would you expect?
- How many flushes would you expect?
- How many straights would you expect?
- How many pairs of Jacks or better would you expect?

0 Royal Flush
0 Straight Flush
0 Flush
0 Straight
0 Pair of Jacks or Better


```
2 Royal Flush
2 Straight Flush
15 Flush
21 Straight
12 Pair of Jacks or Better
```


Probability - DOK 1

- What is the probability of rolling a 7 using two 6-sided dice?

Probability - DOK 2

- What values have a $\frac{1}{12}$ chance of being rolled by two 6 -sided dice?

Source: Daniel Luevanos

Probability - DOK 3

- Using the whole numbers 1 through 9 at most one time each, fill in the blanks to complete this sentence: Rolling a on two ___sided dice is the same probability as rolling $\mathrm{a}_{\text {___ on two ___ }}$-sided dice.

Source: Audrey Mendivil, Daniel Luevanos, and Robert Kaplinsky

How many of these packs will have exactly one yellow Starburst? How many will have exactly two?

287 packs

五
 pink

ล
orange
©
red

Upcoming Units Form

- This form will help us prepare for our August training dates.
- What units are you interested in planning around?
- What resources are you hoping to have?
- Higher DOK problems?
- Application problems?

JOURNAL

- Write a journal entry to reflect on what we have accomplished today.

