Motivating Our Students with Real World ProblemBased Lessons ROBERT KAPLINSKY
 - @robertkaplinsky

DOUBLE-DOUBLE

2004-10-31

YOUR GUEST NUMBER IS
98

$$
\begin{aligned}
& \text { IN-N=OUT BURGER LAS VEGAS EASTERN } \\
& 2004=10-31 \\
& 1651598 \\
& 8: 21 \text { PM }
\end{aligned}
$$

Cashier: SAM

GLEST
 \#: 98

Counter-Eat In

 DblDbl98 Meat Pty KChz
2.65
88.20

Counter-Eat In
TAX 7.50 x
90.85

Amount Due
6.81

CASH TENDEA
Change
$\$ 97.66$
$\$.00$
$2004-10-31$

Cashier: SAM

GLEST
 H: 98

Counter-Eat In

Dblobl

98 Meat Pty XChz

2.65
88.20

Counter-Eat In TAX 7,50x 90.85

Amount Due
6.81
97.66

CASH TENOER Change
$\$ 97.66$ $\$.00$

2008-10-31

$$
8: 21 \text { PM }
$$

		¢
Hamburger w/Onion	243	390
Cheeseburger w/Onion	268	480
Double-Double w/Onion	330	670

Layers	Cost
1	$\$ 1.75$
2	$\$ 2.65$
3	$\$ 3.55$
4	$\$ 4.45$
\cdot	\cdot
\cdot	\cdot
20	$\$ 18.85$
\cdot	\cdot
\cdot	\cdot
100	$\$ 90.85$
\cdot	\cdot
\cdot	$\$ 1.75+(\mathrm{N}-1)^{*} \$ 0.90$
N	

bun + produce + meat + cheese + meat + cheese $=\$ 2.65$
bun + produce + meat + cheese
= \$1.75
meat + cheese $=\$ 0.90$

The Reality

- Students needed guidance to figure out a layer's cost
- Not every class is ready to go straight to 100×100
- Common wrong answers included:
- $\$ 175.00$ ($\$ 1.75 \times 100$ cheeseburgers)
- \$132.50 (\$2.65 x 50 Double-Doubles)
- Students had equations that had more than X patties
- Students were surprised to see three different equations:
- Starting with a Double-Double
- Starting with a cheeseburger
- Starting with produce and bun only
 NHA

Math Question

- Solve the problem on your own. Do not work or share your answer with anyone else.
- You will have 30 seconds to complete it.
- Write your answer down on a paper.

$$
\begin{gathered}
\text { There are } 125 \\
\text { sheep and } 5 \text { dogs } \\
\text { in a flock. How old } \\
\text { is the shepherd? }
\end{gathered}
$$

Of the 32 students I interviewed...

- 75% of them gave me numerical responses
- 2 students calculated the answer to be $130(125+5)$
- 2 students calculated the answer to be 120 (125-5)
- 12 students calculated the answer to be $25(125 \div 5)$
- 0 students calculated the answer to be 625 (125×5)
- 4 students stated that they guessed their answer (90, 5,42 , and 50)
- 4 students tried to divide 125 by 5 but could not correctly implement the procedure

Takeaways

- Making sense of mathematics
- Intellectual autonomy
- Intellectual autonomy is about being able to think for yourself and not being dependent on others for the direction and control of one's thinking.

What Does the NHTSA Say?

Kev Statistics and Consumer Insights:

- Motor vehicle crashes are the leading cause of death for children age 1 through 12 years old. ${ }^{1}$

According to a NHTSA study, 3 out of 4 kids are not as secure in the car as they should be because their car seats are not being used correctly.

${ }^{1}$ Source: Based on the latest mortality data currently available from the CDC's National Center for Health Statistics.

- "because they have their child in the right seat"
- "because their car seats are not being used correctly"

IF YOUR CHILD IS IN THE RIGHT CAR SEAT.
Ad
council
VISIT SAFERCAR.GOV/THERIGHTSEAT

KNOW FOR SURE

IF YOUR CHILD IS IN THE RIGHT CAR SEAT.

VISIT SAFERCAR.GOV/THERIGHTSEAT

 NHTSA

WHAT ISN'T MATHEMATICAL MODEHNG?

- It is not modeling in the sense of, "I do; now you do."
- It is not modeling in the sense of using manipulatives to represent mathematical concepts.
- It is not modeling in the sense of a "model" being just a graph, equation, or function.
- It is not just starting with a real world situation and solving a math problem.
- It is not beginning with the mathematics and then moving to the real world.

PROBLEM- • How often do teachers do

 problem-based learning? lessons take?- Do teachers use problem-based lessons to introduce a topic or after you've already taught it?
- How is problem-based learning assessed?
- How much time does it take to create a problem-based lesson?

WHAT DOES IT LOOK LIKE...

- when students have procedural skill but not conceptual understanding or the ability to apply mathematics?
- when students can work with numbers but cannot:
- critically think
- applying knowledge and skills to real-world settings
- analyze and solve complex problems

How far apart are the exits on this freeway: Jct 90 and Jefferson Blvd?

The Four C's

- Communication - Curiosity
- 6.G. 4 - Represent threedimensional figures using nets made up of rectangles and triangles, and use the nets to find the surface area of these figures.
7.G.6 - Solve real-world and mathematical problems involving area, volume and surface area.
- 8.G.9 - Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and mathematical problems.
- G-GMD.3-Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.
- G-c0. 6 Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure.
- A-CED. 1 - Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.
- F-IF.7a - Graph linear and quadratic functions and show intercepts, maxima, and minima.
6.RP.2 - Understand the concept of a unit rate

The Four C's

- Communication
- Curiosity
- Critical Thinking

Problem Solving Framework

- Inspired by Geoff Krall's resources at emergentmath.com

The Four C's

- Communication
- Curiosity
- Critical Thinking
- Content Knowledge

Construction

- Pick two:

Family

- Pick two:

Problem-Based Learning

- Pick two:

Problem-Based Lesson Resources

- Problem-based lesson search engine:

http://robertkaplinsky.com/prbl-search-engine/

- My lessons: http://www.robertkaplinsky.com/lessons
- Dan Meyer: http://threeacts.mrmeyer.com
- Andrew Stadel: http://tinyurl.com/mrstadel
- Geoff Krall: http://tinyurl.com/PrBLmaps
- Dan Meyer's TED talk: http://tinyurl.com/meyer-TED

How Many Sheets Do You Need To Break Out Of Prison?
Goperations with rationalinumiberso ENTE

Robert graduated from University of

Math content expert

California, Los Angeles (UCLA) with a Bachelors of Science in Mathematics. He has taught mathematics to students at the

Lessons elementary, middle, and high school levels. As

How Much Is One Third Of A Cup Of Butter?

How Do Skytypers Write Messages?

Robert Kaplinsky's Problem-Based Lessons
File Edit View Insert Format Data Tools Help All changes saved in Drive
두
\$ $\% \quad 123$
Arial
10
$\mathrm{B} \quad I \quad \mathrm{~A}$

- 田
 Σ

Task Name

How Can We Water All Of The Grass?
How Much Money IS That?!
How Much Money Should Dr. Evil Demand?
How Tall Is Mini-Me?
How Did They Make Ms. Pac-Man?
Which Ticket Option Is The Best Deal?
How Far Apart Are The Freeway Exits?
Do We Have Enough Paint?
How Many Stars Are There In The Universe?
What Rides Can You Go On?
Do You Have Enough Money?
Which Bed Bath \& Beyond Coupon Should You Use?
Is Gas Cheaper With Cash Or Credit Card?
Where's The Nearest Toys R Us?
How Sharp Is The iPhone 5's Retina Display?
When Should She Take Her Medicine?
How Biq Are Sunspots?
What Michael's Coupon Should I Use?
Is It Cheaper To Pay Monthly or Annually?
How Biq Is The 2010 Guatemalan Sinkhole?
How Can You Win Every Prize At Chuck E. Cheese's?
How Many Royal Flushes Will You Get?
How Much Does The Paint On A Space Shuttle Weigh?
How Did Motel 6 Go From $\$ 6$ to $\$ 66$?
How Much Does The Aluminum Foil Prank Cost?
How Many Laps Is A 5k Race?
Which Toilet Uses Less Water?
How Did Someone Get A \$103,000 Speeding Ticket In Finland? Which Pizza Is A Better Deal?
How Biq Is The World's Largest Deliverable Pizza?
How Many Sheets Do You Need To Break Out Of Prison?
Do Hybrid Cars Pay For Themselves?
How Many Hot Dogs Did They Eat?!
How Much Purple Ribbon Will You Need? Are We There Yet?
Which Chinese Food Coupon Should I Use?
How Biq Is The Vehicle That Uses Those Tires?
Where Would The Angry Birds Have Landed?
How Many Movies Can You See In One Day?
Which Carrots Should You Buy?
How Fast Can You Throw A Baseball?

B	c	D	E	F	
Concept / Skill	Standard 1	Standard 2	Standard 3	Standard 4	St
Circles, Pythagorean Theorem, trigonometric ratios	7.G. 4	8.G. 7	G-SRT. 8	G-MG. 1	G
Volume of rectangular prism	5.MD. 3	5.MD. 4	5.MD. 5	5.MD.5b	5.
Exponential Growth	N-RN. 2	A-SSE. 1	A-SSE.3c	A-SSE. 4	A-
Scale and Dividing Decimals	5.NF. 5	5.NF.5a	5.NF.5b	6.NS. 3	
Transformations (Rotations, Reflections, and Translations)	8.G. 1	8.G. 2	8.G. 3	8.G. 4	G
Unit Rates and Ratios	6.RP. 2	$6 . \mathrm{RP} .3$	6.RP.3a	6.RP.3b	
Fractions on a Number Line and Subtracting Fractions	3.NF. 2	3.NF.2b	4.NF. 2	4.NF.3a	4.
Area	3.MD. 5	3.MD. 6	3.MD. 7		
Scientific Notation	8.EE. 3	8.EE. 4			
Inequalities and Measurement	2.MD. 1	6.NS.7a	6.NS.7b		
Money	2.MD. 8				
Percent Discount	7.RP. 3				
Percent Discount	7.RP. 3				
Pythagorean Theorem (Distance in coordinate system)	8.G. 8	G-SRT. 8	G-GPE. 7		
Pythagorean Theorem (Length of a side)	8.G. 7	G-SRT. 8	G-GPE. 7		
Operations with Time Intervals	4.MD. 2				
Converting Units, Proportions, and Scientific Notation	5.MD. 1	7.RP. 2	7.G. 4	8.EE. 4	G
Percent Discount	7.RP. 3	A-CED. 3			
Decimal Operations and/or Systems of Equations	5.NBT. 7	8.EE.8c	A-CED. 3	A-REI. 11	F-
Volume of Cylinder	5.MD. 3	5.MD. 4	5.MD. 5	8.G.9	G
Decomposing Numbers and/or Systems of Equations	2.NBT. 7	3.NBT. 2	3.NBT. 3	8.EE.8c	A-
Probability	7.SP. 5	7.SP. 6	7.SP. 7	S-MD. 5	S-
Surface Area	6.G.4	7.G. 6	8.G. 7	G-MG. 1	G
Percent Increase and Compound Interest	7.RP. 3	A-SSE. 1b	F-BF. 1	F-IF.8b	F-
Surface Area and Unit Rates	6.G.4	6.RP. 2	6.RP. 3	7.G.6	
Perimeter	4.MD. 3				
Systems of Equations/Inequalities	8.EE.8c	A-CED. 3	A-REI. 11	F-BF. 1	
Linear Equations	A-CED. 2	F-BF. 1	F-IF. 4	F-IF. 6	
Area or Circle, Square, and Unit Rates	3.MD. 5	3.MD. 6	3.MD. 7	4.MD. 3	6.
Area of Square	3.MD. 5	3.MD. 6	3.MD. 7	4.NBT. 3	4.1
Integer Operations	5.NBT. 6				
Systems of Equations or Rates	6.RP. 2	6.RP. 3	8.EE.8c	A-CED. 3	F-
Linear and Quadratic Functions	8.F. 3	8.F. 4	F-BF. 1	F-BF. 2	F-
Perimeter \& Circumference	3.MD. 8	4.MD. 3	7.G. 4		
Adding Times	3.MD. 1	4.MD. 2			
Percent Discount	7.RP. 3				
Ratio and Proportions	7.RP. 2				
Create Equation From Quadratic Graph	A-CED. 1	F-BF. 1	F-IF. 4	F-IF.7a	F-L
Adding Times	3.MD. 1	4.MD. 2			
Unit Rates	6.RP. 1	6.RP. 2	6.RP. 3		
Converting Units and Unit Rates	5.MD. 1	6.RP. 2			

Google
 gl

Suloscribe to Lessons

Enter your email address below to receive emails whenever a new lesson is published.

Subscribe

Subscribe to Blog

Enter your email address below to receive emails whenever a new blog post is published.

Subscribe

Submit

The links below are the pages that are being searched by the search engine:

- 101 Questions
- Andrew Stadel
- Dan Meyer
- Dane Ehlert
- Emergent Math's Problem Based Curriculum Maps
- Estimation180
- Geoff Krall
m Feeling Lucky

Problem-Based Lesson Search Engine

This search engine searches all of the sites below to quickly help you find a problem-based lesson (also called 3-Act Task, mathematical modeling, or application problem):

The link belo

Problem-Based Fessons

101qs.com

Andrew Stadel

Dan Meyer

Mathalicious

Problem Based Curriculum Maps

