Differentiating with Depth of Knowledge ROBERT KAPLINSKY

ㅎ․ @robertkaplinsky

COMMON CORE STATE STANDARDS INITIATIVE

CCSS.MATH.CONTENT M minmmand of

 Apply the IENT.A.MD.A.3 3 , harder orand perimeter formulas for equal intensity, of each grade: co skills and fluency,

Source: http://www.corestandards.org/other-resources/key-shifts-in-mathematics/

What is the perimeter

 of a rectangle that measures 8 units by 4 units?
Components of Rigor

\square Procedural Skill and Fluency

\square Conceptual Understanding

List the dimensions of

a rectangle with a perimeter of 24 units.

Components of Rigor

 [-] Procedural Skill and Fluency[I Conceptual Understanding

Components of Rigor

\square Procedural Skill and Fluency

\square Conceptual Understanding

LIst ur angle with a
of a rectangle with perimeter of 24 units.

Components of Rigor

 [-] Procedural Skill and Fluency[I Conceptual Understanding

What is the perimeter

 of a rectanglethat measures 8 units by 4 units?

Components of Rigor

\square Procedural Skill and Fluency

\square Conceptual Understanding

Components of Rigor

\square Procedural Skill and Fluency

\square Conceptual Understanding

Of all the rectangles with a perimeter of 24 units, which one has the most area?

Of all the rectangles with a perimeter of 24 units, which one
has the most area?

Components of Rigor

 [-] Procedural Skill and Fluency[I Conceptual Understanding

Defining the Problem

- Students appear to demonstrate "deep, authentic command of mathematical concepts" when given commonly used problems.
> However with more challenging problems, the same students seem to no longer demonstrate that command.

Addressing the Problem

- First, we must have a clear understanding about why these problems are different from one another.
$>$ Next, we need to practice implementing these problems such that all students are engaged in a problem that is at the right challenge level for them.
$>$ Last, we need a source that can provide us with a variety of free problems.

Topic	Adding Whole Numbers	Money	Fractions on a Number Line	Area and Perimeter	Subtracting Mixed Numbers
$\begin{array}{\|l\|} \hline \text { CCSS } \\ \text { Standard(s) } \\ \hline \end{array}$	- 1.NBT. 4 - 2.NBT. 5	- 2.MD. 8	- 3.NF. 2	$\begin{array}{\|ll} \hline- & 3 . M D .8 \\ - & \text { 4.MD. } 3 \\ \hline \end{array}$	- 5.NF. 1
DOK 1 Example	Find the sum. $44+27=$	If you have 2 dimes and 3 pennies, how many cents do you have	Which point is located at $\frac{7}{12}$ below?	Find the perimeter of a rectangle that measures 4 units by 8 units.	Find the difference. $5 \frac{1}{2}-4 \frac{2}{3}=$
DOK 2 Example	Fill in the boxes below using the whole numbers 1 through 9 , no more than one time each, so that you make a true equation. \square $+53=$ \square	Make 47\$ in three different ways with either quarters, dimes, nickels, or pennies.	Label the point where $\frac{3}{4}$ belongs on the number line below. Be as precise as possible.	List the measurements of three different rectangles that each has a perimeter of 20 units.	Create three different mixed numbers that will make the equation true by using the whole numbers 1 through 9, no more than one time each,. You may reuse the same whole numbers for each of the three mixed numbers. $5 \frac{4}{5}-\square \frac{\square}{20}=3 \frac{1}{2}$
DOK 3 Example	Make the largest sum by filling in the boxes below using the whole numbers 1 through 9, no more than one time each. \qquad $+$ \square $=$	Make 47 $\$$ using exactly 5 coins with either quarters, dimes, nickels, or pennies.	Create 5 fractions using the whole numbers 0 through 9 , no more than one time each, as numerators and denominators and correctly place them all on a number line.	What is the greatest area you can make with a rectangle that has a perimeter of 24 units?	Make the smallest difference by filling in the boxes below using the whole numbers 1 through 9, no more than one time each.

DOK
 Distinguishing Between Depth of Knowledge Levels in Mathematics

DOK Level Differences

- Level 1: Recall \& Reproduction
- Often a trivial application of facts.
- Requires little to no cognitive effort beyond remembering the right formula.
- Usually only one answer.
- Level 2: Skills \& Concepts
- Usually requires more than one step to solve.
- Often multiple answers.

Level 3: Strategic Thinking

- Usually requires critical thinking about the best way to approach a problem.
- May be multiple answers or a single optimal answer.
- Often challenging enough to make your head hurt.
> Level 4: Exłended Thinking
- In mathematics these are generally represented by performance tasks or problem-based lessons.

Probability

What is the probability of

 rolling a sum of 5 using two 6sided dice?
Probability

What value(s) have a $\frac{1}{12}$ probability of being rolled as the sum of two 6 -sided dice?

Author: Daniel Luevanos

Probability

Fill in the blanks to complete this sentence using the whole numbers 1 through 9, no more than one time each.

Rolling a sum of ___ on two ___sided dice is the same probability as rolling a

 sum of ___ on two ___-sided dice.Authors: Audrey Mendivil, Daniel Luevanos, and Robert Kaplinsky

DEPTH OF KNOWLEDGE EXTENSIONS MENU

Question \#1 3.MD. 8 : DOK 2 Draw three different rectangles with a perimeter of 20 units.	Question \#2 $3 . M D .7$: DOK 1 Find the rectangle's area. 1 point	Question \#3 3.MD. 5 : DOK 2 The length of one side of a rectangle is 6 cm and its perimeter is 16 cm . What is the area of the rectangle in square centimeters?
Question \#4 4.MD. 3 : DOK 2 Which square is bigger: a square with a perimeter of 36 units or a square with an area of 36 square units?	Instructions You must earn at least 8 points by doing the problems of your choice. You may work by yourself or in pairs but each person needs to turn in separate work. Circle the questions you have answered.	Question \#5 4.MD. 3 : DOK 3 What is the greatest area you can make with a rectangle that has a perimeter of 24 units?
Question \#6 4.MD. 3 : DOK 3 What is the greatest perimeter you can make on a rectangle with an area of 24 square units?	Question \#7 3.MD. 8 : DOK 2 What is the area of a square that has a perimeter of 20 units?	Question \#8 3.MD. 8 : DOK 1 Find the rectangle's perimeter. 1 point

Lessons Learned

- Strangely little collaboration
- Students could pick their own problems.
- Few neighbors were working on the same problem.
- Next time had kids pair up and pick the same problem to work on.
$>$ The fraction sheet was chaos
- Just because a problem is below grade level, doesn' \dagger mean they can do it.
- Make sure students can do a DOK 1 before giving them DOK 2 and 3 problems.
- Some problems weren't chosen
- Problem wording wasn't always as clear for students as it was to me.
- Point values need fine tuning

Tołal Open Middle Problems

Open Middle Author Percentages

80\%
70\% --~000000
60\%
50\%
40\%
30\%
$\rightarrow-\Omega .00000$
20\%
10\%
0\%

- Open Middle • \#MTBoS

Problems by DOK Level

Note: Data as of March 2015

Problems by Grade Band

Note: Data as of March 2015

Open Middle

Source: Dylan Kane

COMMON CORE STATE STANDARDS

- Grade 1 (6)
- Number \& Operations in Base Ten (3)
- Operations \& Algebraic Thinking (3)
- Grade 2 (6)
- Measurement \& Data (2)
- Number \& Operations in Base Ten (4)
- Grade 3 (11)
- Measurement \& Data (6)
- Number \& Operations in Base Ten (3)
- Number \& Operations-Fractions (2)

