Motivating Our Students with Real World Problem-Based Lessons

ROBERT KAPLINSKY @robertkaplinsky

DOUBLE-DOUBLE Double Meat & 265 CHEESEBURGER 175 HAMBURGER **1**50 **FRENCH FRIES** ICED TEA 155 SHAKES Chocolate Strawberry 70 COFFEE

OPEN 10:30 a.m. to 1:00 a.m. Fri. and Sat. until 1:30 a.m.

www.FriedmanArchives.com

2004-10-31	
	8:21 PM
YOUR GUEST NUN	MBER IS
IN-N-OUT BURGER LAS V 2004-10-31 165 1 5 9	EGAS EASTERN 8:21 PM
Cashier: SAM GUEST #: 98	
Dunter-Eat	t In
98 Meat Pty XChz	2.65 88.20
Counter-Eat In TAX 7.50% Amount Due	90.85 6.81
CASH TENDER Change	\$97.66
2004	

2004-10-31

Counter-Eat 1dd I dd 98 Meat Pty XChz Counter-Eat In TAX 7.50% Amount Due CASH TENDER change 2004-10-31

Cashier: SAM

:

98

GUEST

2.65 88.20 90.85 6.81 97.66 \$97.66 \$.00

In

8:21 PM

	Serving Size (g)	Calories
Hamburger w/Onion	243	390
Cheeseburger w/Onion	268	480
Double-Double w/Onion	330	670

Mathematical Process Standards

- (A) apply mathematics to problems arising in everyday life, society, and the workplace;
- (B) use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution;
- (C) select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems;

Mathematical Process Standards

- (D) communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate;
- (E) create and use representations to organize, record, and communicate mathematical ideas;
- (F) analyze mathematical relationships to connect and communicate mathematical ideas; and
- (G) display, explain, and justify mathematical ideas and arguments using precise mathematical language in written or oral communication.

The Reality

- Students needed guidance to figure out a layer's cost
- Not every class is ready to go straight to 100x100
- Common wrong answers included:
 - \$175.00 (\$1.75 x 100 cheeseburgers)
 - \$132.50 (\$2.65 x 50 Double-Doubles)
- Students had equations that had more than X patties
- Students were surprised to see three different equations:
 - Starting with a Double-Double
 - Starting with a cheeseburger
 - Starting with produce and bun only

STUDENT WORK

The only difference between a double double and a choeseburger is one patty and one slice of cheese. So you subtract the prices of the two to find the price of only one patty & cheese. You then use that number (.90) & subtract it from the price of all the extra stuff. Multiply by 100

What is your conclusion?

What is your conclusion? A 100×100 at In-h-out cost \$90.85. To solve that, you start by subtracting the price of a cheese burger from a double double. The answer (.90) is the price of a patty and cheese slice. The answer (.90) has one less patty than what you want.

You multiply (.90) by one less patty than what you want. (x-1), and you add the price of a cheese burger (1.75). You end up with the eq. [y=,90 (x-1)+1.75.]. For the 100×100, you plug in 100 to the (x) and you end up with \$90.85. $\begin{aligned} y &= .90(100-1) + 1.75 \\ y &= .90(100-1) + 1.75 \\ y &= .90.85 \end{aligned}$

What is your conclusion?

Figure the price difference from the Double-Double with a cheese burger. Then find out the prize for the produce and cheese-beef. get total into \$ 90.85

The Four C's

Communication
 Curiosity

HANCOCK
KIT KITTREDGE
WALL E
THE FOOT FIST WAY
INCREDIBLE HULK
THE HAPPENING
DONT MESS WITH THE ZOHAN
IRON MAN
GET SMART
WALL E
WALL E
THE FOOT FIST WAY
INCREDIBLE HULK
THE HAPPENING
DONT MESS WITH THE ZOHAN
INDIANA JONES
HELL BOY JULY 11

The Four C's

Communication
 Curiosity
 Critical Thinking

Problem Solving Framework

Inspired by Geoff Krall's resources at emergentmath.com

Name:	Period: Date:			
What problem are you trying to figure out?	What guesses do you have?			
What do you already know from the problem?	What do you need to know to solve the problem?			
What should we title this lesson?				
which should we this lesson?				
What is your conclusion? How did you reach that conclusion?				

The Four C's

- Communication
- Curiosity
- Critical Thinking
- Content Knowledge

PROBLEM-BASED LEARNING FAQ

- How long do problem based lessons take?
- How often do teachers do problem-based learning?
- Do teachers use problem-based lessons to introduce a topic or after you've already taught it?
- How is problem-based learning assessed?
- How much time does it take to create a problem-based lesson?

Why Choose Us?

Robert graduated from University of California, Los Angeles (UCLA) with a Bachelors of Science in Mathematics. He has taught mathematics to students at the elementary, middle, and high school levels. As

Lessons

0

Home Lessons Blog Speaking Services Beliefs About Contact

5th All Kinder 1st 2nd 3rd 4th 6th 7th 8th Alg Func Geo Modeling Numb & Quant Stats & Prob

How Many Hot Dogs And Buns Should He Buy?

What Does 2000 Calories Look Like?

Robert Kaplinsky's Problem-Based Lessons 😭 🖿

File Edit View Insert Format Data Tools Help All changes saved in Drive

f×

	A	В	с	D	E	F	
1	Task Name	Concept / Skill	Standard 1	Standard 2	Standard 3	Standard 4	Sta
2	How Can We Water All Of The Grass?	Circles, Pythagorean Theorem, trigonometric ratios	7.G.4	8.G.7	G-SRT.8	G-MG.1	G-I
3	How Much Money IS That?!	Volume of rectangular prism	5.MD.3	5.MD.4	5.MD.5	5.MD.5b	5.N
4	How Much Money Should Dr. Evil Demand?	Exponential Growth	N-RN.2	A-SSE.1	A-SSE.3c	A-SSE.4	A-F
5	How Tall Is Mini-Me?	Scale and Dividing Decimals	5.NF.5	5.NF.5a	5.NF.5b	6.NS.3	
6	How Did They Make Ms. Pac-Man?	Transformations (Rotations, Reflections, and Translations)	8.G.1	8.G.2	8.G.3	8.G.4	G-(
7	Which Ticket Option Is The Best Deal?	Unit Rates and Ratios	6.RP.2	6.RP.3	6.RP.3a	6.RP.3b	
8	How Far Apart Are The Freeway Exits?	Fractions on a Number Line and Subtracting Fractions	3.NF.2	3.NF.2b	4.NF.2	4.NF.3a	4.1
9	Do We Have Enough Paint?	Area	3.MD.5	3.MD.6	3.MD.7		
10	How Many Stars Are There In The Universe?	Scientific Notation	8.EE.3	8.EE.4			
11	What Rides Can You Go On?	Inequalities and Measurement	2.MD.1	6.NS.7a	6.NS.7b		
12	Do You Have Enough Money?	Money	2.MD.8				
13	Which Bed Bath & Beyond Coupon Should You Use?	Percent Discount	7.RP.3				
14	Is Gas Cheaper With Cash Or Credit Card?	Percent Discount	7.RP.3				
15	Where's The Nearest Toys R Us?	Pythagorean Theorem (Distance in coordinate system)	8.G.8	G-SRT.8	G-GPE.7		
16	How Sharp Is The iPhone 5's Retina Display?	Pythagorean Theorem (Length of a side)	8.G.7	G-SRT.8	G-GPE.7		
17	When Should She Take Her Medicine?	Operations with Time Intervals	4.MD.2				
18	How Big Are Sunspots?	Converting Units, Proportions, and Scientific Notation	5.MD.1	7.RP.2	7.G.4	8.EE.4	G-I
19	What Michael's Coupon Should I Use?	Percent Discount	7.RP.3	A-CED.3			
20	Is It Cheaper To Pay Monthly or Annually?	Decimal Operations and/or Systems of Equations	5.NBT.7	8.EE.8c	A-CED.3	A-REI.11	F-E
21	How Big Is The 2010 Guatemalan Sinkhole?	Volume of Cylinder	5.MD.3	5.MD.4	5.MD.5	8.G.9	G-(
22	How Can You Win Every Prize At Chuck E. Cheese's?	Decomposing Numbers and/or Systems of Equations	2.NBT.7	3.NBT.2	3.NBT.3	8.EE.8c	A-C
23	How Many Royal Flushes Will You Get?	Probability	7.SP.5	7.SP.6	7.SP.7	S-MD.5	S-I
24	How Much Does The Paint On A Space Shuttle Weigh?	Surface Area	6.G.4	7.G.6	8.G.7	G-MG.1	G-I
25	How Did Motel 6 Go From \$6 to \$66?	Percent Increase and Compound Interest	7.RP.3	A-SSE.1b	F-BF.1	F-IF.8b	F-L
26	How Much Does The Aluminum Foil Prank Cost?	Surface Area and Unit Rates	6.G.4	6.RP.2	6.RP.3	7.G.6	
27	How Many Laps Is A 5k Race?	Perimeter	4.MD.3				
28	Which Toilet Uses Less Water?	Systems of Equations/Inequalities	8.EE.8c	A-CED.3	A-REI.11	F-BF.1	
29	How Did Someone Get A \$103,000 Speeding Ticket In Finland?	Linear Equations	A-CED.2	F-BF.1	F-IF.4	F-IF.6	
30	Which Pizza Is A Better Deal?	Area or Circle, Square, and Unit Rates	3.MD.5	3.MD.6	3.MD.7	4.MD.3	6.F
31	How Big Is The World's Largest Deliverable Pizza?	Area of Square	3.MD.5	3.MD.6	3.MD.7	4.NBT.3	4.N
32	How Many Sheets Do You Need To Break Out Of Prison?	Integer Operations	5.NBT.6				
33	Do Hybrid Cars Pay For Themselves?	Systems of Equations or Rates	6.RP.2	6.RP.3	8.EE.8c	A-CED.3	F-E
34	How Many Hot Dogs Did They Eat?!	Linear and Quadratic Functions	8.F.3	8.F.4	F-BF.1	F-BF.2	F-I
35	How Much Purple Ribbon Will You Need?	Perimeter & Circumference	3.MD.8	4.MD.3	7.G.4		-
36	Are We There Yet?	Adding Times	3.MD.1	4.MD.2			
37	Which Chinese Food Coupon Should Use?	Percent Discount	7.RP.3				
38	How Big Is The Vehicle That Uses Those Tires?	Ratio and Proportions	7.RP.2				
39	Where Would The Angry Birds Have Landed?	Create Equation From Quadratic Graph	A-CED.1	F-BF.1	F-IF.4	F-IF.7a	F-L
40	How Many Movies Can You See In One Day?	Adding Times	3.MD.1	4.MD.2			
41	Which Carrots Should You Buy?	Unit Rates	6.RP.1	6.RP.2	6.RP.3		1
42	How Fast Can You Throw A Baseball?	Converting Units and Unit Rates	5.MD.1	6.RP.2			1

Go	ogle	
Google Search	I'm Feeling Lucky	

Problem-Based Lesson Search Engine

This search engine searches all of the sites below to quickly help you find a problem-based lesson (also called 3-Act Task, mathematical modeling, or application problem):

Submit

The links below are the pages that are being searched by the search engine:

- 101 Questions
- Andrew Stadel
- Dan Meyer
- Dane Ehlert
- Emergent Math's Problem Based Curriculum Maps
- Estimation180
- Geoff Krall

Subscribe to Lessons

Enter your email address below to receive emails whenever a new lesson is published.

Subscribe

Subscribe to Blog

Enter your email address below to receive emails whenever a new blog post is published.

Subscribe

Problem-Based Lessons

101qs.com

Andrew Stadel

Dan Meyer

Mathalicious

Problem Based Curriculum Maps

Problem-Based Lesson Resources

- Problem-based lesson search engine: <u>http://robertkaplinsky.com/prbl-search-engine/</u>
- My lessons: http://www.robertkaplinsky.com/lessons
- Dan Meyer: http://threeacts.mrmeyer.com
- Andrew Stadel: <u>http://tinyurl.com/mrstadel</u>
- Graham Fletcher: http://gfletchy.com/3-act-lessons/
- Geoff Krall: <u>http://tinyurl.com/PrBLmaps</u>
- Mathalicious: <u>http://www.mathalicious.com</u>
- Yummy Math: http://www.yummymath.com

