Evergreen Public Schoos

ROBERT KAPLINSKY @robertkaplinsky

1/3 cup butter

1/3 cup white sugar

3 tablespoons and 1-3/4 teaspoons packed brown sugar

1/3 cup peanut butter

1/4 teaspoon vanilla extract

How can we tell where to cut the butter so you have 1/3 of a cup?

1/2 cup butter

1/2 cup white sugar

1/3 cup packed brown sugar

1/2 cup peanut butter

1/2 teaspoon vanilla extract

How can we tell where to cut the butter so you have 1/2 of a cup?

FIVE PRACTICES

Discussion Questions

- "Giving students too much or too little support, or too much direction, can result in a decline in the cognitive demands of the task." (p. 550) Why?
- "By making purposeful choices about the order in which students' work is shared, teachers can maximize the chances that their mathematical goals for the discussion will be achieved." (p. 554) What ways do teachers currently select students? How would you suggest they change their selection process after reading this?
- What challenges might teachers have when trying to "connect" student solutions? (p. 554)

Implementing the Five Practices

- Anticipate potential student responses to the butter stick fraction problem.
- 2. Review the ten student work samples that represent students in your classroom.
- 3. Figure out which students you would have share their mathematical work.
- 4. Determine the order you would have those students present their work.
- 5. Decide on which connections you would emphasize between the students' work and mathematical ideas.

Posters

- At the top of the poster, list the selection strategy used by your group. For example:
 - Starting with the most commonly used strategy and moving to one that few students used.
 - Starting with a strategy that is more concrete and moving to strategies that are more abstract.
 - Incorporating wrong answers to address common misconceptions.
- Attach those students' work to the poster in the order that you would present it.
- Next to the student work list the questions you would ask the student(s) or ideas that you would want to come out as a result of showing that student's work.

CCSS.MATH.CONTENT.4.MD.A.3 nmand of Apply the area and perimeter formulas for harder or rectangles in real world and mathematical problems. meet the equal intensity, u of each grade: conceptua skills and fluency, and application.

Source: http://www.corestandards.org/other-resources/key-shifts-in-mathematics/

What is the perimeter of a rectangle that measures 8 units by 4 units?

List the dimensions of a rectangle with a perimeter of 24 units.

Components of Rigor Procedural Skill and Fluency

Conceptual Understanding

List the of a rectangle with a perimeter of 24 units.

Components of Rigor Procedural Skill and Fluency

Conceptual Understanding

Source: http://www.cde.ca.gov/ta/tg/sr/documents/cstrtqmath3.pdf

What is the perimeter of a rectangle **Mathematics** that measures 8 units by 4 units?

Of all the rectangles with a perimeter of 24 units, which one has the most area?

00:00:00:00 Of all the revealed its with a perimeter of 24 units, which one has the mast area?

Components of Rigor Procedural Skill and Fluency

Conceptual Understanding

Defining the Problem

Students appear to demonstrate "deep, authentic command of mathematical concepts" when given commonly used problems. However with more challenging problems, the same students seem to no longer demonstrate that command.

Addressing the Problem

- First, we must have a clear understanding about why these problems are different from one another.
- Next, we need to practice implementing these problems such that all students are engaged in a problem that is at the right challenge level for them.

Last, we need a source that can provide us with a variety of free problems.

DOK Distinguishing Between Depth of Knowledge Levels in Mathematics

Topic	Adding Whole Numbers	Money	Fractions on a Number Line	Area and Perimeter	Subtracting Mixed Numbers
CCSS	• 1.NBT.4	 2.MD.8 	 3.NF.2 	 3.MD.8 	• 5.NF.1
Standard(s)	• 2.NBT.5			• 4.MD.3	
DOK 1	Find the sum.	If you have 2	Which point is located at $\frac{7}{12}$	Find the perimeter	Find the difference.
Example		dimes and 3	helow?	of a rectangle that	
	44 + 27 =	pennies, how		measures 4 units	_ 1 _ 2
	11 27	many cents		by 8 units.	$5\frac{1}{2} - 4\frac{1}{2} =$
		do you have	$0 \frac{1}{2}$ 1		2 5
DOK 2	Fill in the boxes below	Make 47¢ in	Label the point where $\frac{3}{2}$	List the	Create three different mixed
Example	using the whole	three	belongs on the number line	measurements of	numbers that will make the
	numbers 1 through 9,	different	below Be as precise as	three different	equation true by using the whole
	no more than one time	ways with	nossible	rectangles that	numbers 1 through 9, no more
	each, so that you make	either	possible.	each has a	than one time each,. You may
	a true equation.	quarters,		perimeter of 20	reuse the same whole numbers
		dimes,	<++ +>	units.	for each of the three mixed
	+53 =	nickels, or	0 1		numbers.
	A	pennies.	5		-4 - 1
					5 - = 3 - = 3 - = 3
					5 20
DOK 3	Make the largest sum	Make 47¢	Create 5 fractions using the	What is the	Make the smallest difference by
Example	by filling in the boxes	using exactly	whole numbers 0 through 9,	greatest area you	filling in the boxes below using
	below using the whole	5 coins with	no more than one time each,	can make with a	the whole numbers 1 through 9,
	numbers 1 through 9,	either	as numerators and	rectangle that has a	no more than one time each.
	no more than one time	quarters,	denominators and correctly	perimeter of 24	
	each.	dimes,	place them all on a number	units?	
	,	nickels, or	line.		: : : :
	+ =	pennies.			

ROBERT KAPLINSKY

More free DOK 2 & 3 problems available at openmiddle.com | © 2015 Robert Kaplinsky, robertkaplinsky.com

DOK Distinguishing Between Depth of Knowledge Levels in Mathematics

Topic	Surface Area and Probability		Transformations	Factoring	Quadratics in Vertex		
	Volume			Quadratics	Form		
CCSS	• 6.G.4	• 7.SP.5	• 8.G.1	 A-SSE.3a 	• F-IF.7a		
Standard(s)	• 7.G.6	• 7.SP.7	• G-CO.5				
DOK 1	Find the surface	What is the probability of	Rotate the image below 90°	Find the factors:	Find the roots and		
Example	area of a	rolling a sum of 5 using	counterclockwise and reflect it	- 2	maximum of the		
	rectangular prism	two 6-sided dice?	across a	$2x^2 + 7x + 3$	quadratic equation		
	that measures 3		horizontal		below.		
	units by 4 units by		line.		··· 2(··· 4)2 2		
	5 units.		A B		$y = 3(x-4)^2 - 3$		
DOK 2	List the	What value(s) have a	List three sequences of	Fill in the blank	Create three		
Example	measurements of	1/12 probability of being	transformations that take pre-	with integers so	equations for		
	three different	rolled as the sum of two	image	that the quadratic	quadratics in vertex		
	rectangular prisms	6-sided dice?	ABCD to	expression is	form that have roots		
	that each has a		image	factorable.	at 3 and 5 but have		
	surface area of 20		A'B'C'D'.	2	different maximum		
	square units.		D' Pre-Image Image	$x^2 + x + 4$	and/or minimum		
					values.		
DOK 3	What is the	Fill in the blanks to	What is the fewest number of	Fill the blank by	Create a quadratic		
Example	greatest volume	complete this sentence	transformations needed to take	finding the largest	equation with the		
	you can make with	using the whole numbers	pre-image ABCD to image A'B'C'D'?	and smallest	largest maximum		
	a rectangular	1 through 9, no more	B'	integers that will	value using the		
	prism that has a	than one time each.		make the quadratic	whole numbers 1		
	surface area of 20		$\sim \leq > \sqrt{\sqrt{2}}$	expression	through 9, no more		
	square units?	Rolling a sum of on		factorable.	than one time each.		
		twosided dice is the	B V	0.2 + 0 +			
		same probability as rolling	V D'	$2x^2 + 3x + _$	$y = - [(x - [])^{-} + []$		
		a sum or on two	Pre-Image Image				
		sided dice.					

ROBERT KAPLINSKY

More free DOK 2 & 3 problems available at openmiddle.com | © 2015 Robert Kaplinsky, robertkaplinsky.com

DOK Level Differences

Level 1: Recall & Reproduction

- Often a trivial application of facts.
- Requires little to no cognitive effort beyond remembering the right formula.
- Usually only one answer.

Level 2: Skills & Concepts

- Usually requires more than one step to solve.
- Often multiple answers.

Level 3: Strategic Thinking

- Usually requires critical thinking about the best way to approach a problem.
- May be multiple answers or a single optimal answer.
- Often challenging enough to make your head hurt.

Level 4: Extended Thinking

In mathematics these are generally represented by performance tasks or problem-based lessons.

Probability What is the probability of rolling a sum of 5 using two 6sided dice?

Probability What value(s) have a $\frac{1}{12}$ probability of being rolled as the sum of two 6-sided dice?

Author: Daniel Luevanos

Probability

Fill in the blanks to complete this sentence using the whole numbers 1 through 9, no more than one time each.

Rolling a sum of _____ on two _____-sided dice is the same probability as rolling a sum of _____ on two _____-sided dice.

Authors: Audrey Mendivil, Daniel Luevanos, and Robert Kaplinsky

Make the largest sum by filling in the boxes below using the whole numbers 1 through 9, no more than one time each.

bllow

ave

Follow

@robe
tease
more €
1:27 PI
\$:47 PM - 4 May 2015
★
★
★
★

@fawnpnguyen @robertkaplinsky @openmiddle I agree OMP allow for multiple approaches and/or solutions where BT seemed closed most of the time 1:44 PM - 4 May 2015

Depth of Knowledge – Level One

What is the circle's circumference? $\pi \approx 3.14$

What is the circle's area? $\pi \approx 3.14$

10 units

10 units

This circular stage has a radius of 25 meters.

Which equation could be used to find the area of the stage in square meters?

- A $A = 25\pi$
- B $A = 50\pi$
- $C \quad A = \pi \cdot 25^2$
- $\mathbf{D} = \mathbf{A} \cdot \mathbf{50^2}$

The top part of this hat is shaped like a cylinder with a diameter of 7 inches.

Which measure is *closest* to the length of the band that goes around the outside of the hat?

- A 10.1 inches
- B 11.0 inches
- C 22.0 inches
- D 38.5 inches

CSM00268

Source: 6th Grade CST Released Test Questions - http://www.cde.ca.gov/ta/tg/sr/documents/cstrtqmath6.pdf

Student Data Facts

- 396 seventh grade students were assessed
- 68.26% correctly answered the circumference question
- 78.59% correctly answered the area question

Mathematics Preliminary Summative Assessment Blueprint Target Sampling Mathematics Grade 7—Table 6b

Claim		Content	Assessment Targets	DOK	Minimum # Scored Tasks		Minimum # Items per Item Type		Min/Max Number	
		outogoly			CAT	PT/ECR	SR	CR	of Items	
			A. Analyze proportional relationships and use them to solve real-world and mathematical problems.	1,2	p(9)=1.0					
			E. Draw, construct, and describe geometrical figures and describe the 2,3 relationship between them.							
			F. Solve real-life and problems involving area, surface area,	1	1,2					
	Sunnarti		problems involving angle measure, area, surface area, and volume.	1,2						
		Supporting Cluster	G. Use random sampling to draw inferences about a population.	1,2		0	2	1	5/8	
			 H. Draw informal comparative inferences about two populations. 	1,2	p(2)=1.0					
			 Investigate chance processes and develop, use, and evaluate probability models. 	1,2						

Depth of Knowledge – Level Two Which circle is bigger? How do you know? Circle A Circle B Area = 36 units^2 Circumference = 36 units^2 $A = \pi \cdot r^2$ $C = \pi \cdot 2 \cdot r$ $A \approx 3.14 \cdot 5.73^2$ $36 \approx 6.28 \cdot r$ $A \approx 3.14 \cdot 32.83$ 36 $\overline{6.28} \approx r$ $A \approx 103.15 \text{ units}^2$ 5.73 units $\approx r$

Student Data Facts

- Of the 396 seventh grade students who were assessed, 12.12% earned two points on the DOK 2 question.
- 97.92% of the students who correctly answered the DOK 2 question also correctly answered both of the two DOK 1 questions.
- 10.61% of the students who correctly answered both of the two DOK 1 questions also correctly answered the DOK 2 question.

More Student Data Facts

- 28.28% of the students earned only one point.
- All of them earned one point by choosing Circle B and providing insufficient reasoning.
- 59.59% of the students earned no points.

Mathematics Preliminary Summative Assessment Blueprint Target Sampling Mathematics Grade 7—Table 6b

Claim	Content	Assessment Targets	DOK	Minimum # Scored K Tasks		Minimum # Items per Item Type		Min/Max Number
	outogory			CAT	PT/ECR	SR	CR	of Items
		A. Analyze proportional relationships and use them to solve real-world and mathematical problems.	1,2	p(0) = 1.0	0	7	4	15/20
		D. Solve real-life and mathematical problems using numerical and algebraic expressions and equations.	1,2	p(9)-1.0				
	Phonty Gluster	B. Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers.	1,2	p(6)=1.0				
		C. Use properties of operations to generate equivalent expressions.	1	1				
1. Concepts and Procedures	Supporting Cluster	E. Draw, construct, and describe geometrical figures and describe the relationship between them.	2,3	p(2)=1.0				
		F. Solve real-life and mathematical problems involving angle measure, area, surface area, and volume.	1,2	- p(3)=1.0		2	1	5/8
		G. Use random sampling to draw inferences about a population.	1,2		0			
		 H. Draw informal comparative inferences about two populations. 	1,2	p(2)=1.0				
		 Investigate chance processes and develop, use, and evaluate probability models. 	1,2	1,2				

DEPTH OF KNOWLEDGE EXTENSIONS MENU

Question #1 <u>3.MD.8 : DOK 2</u> Draw three different rectangles with a perimeter of 20 units.	Question #2 <u>3.MD.7 : DOK 1</u> Find the rectangle's area.	Question #3 <u>3.MD.5 : DOK 2</u> The length of one side of a rectangle is 6 cm and its perimeter is 16 cm. What is the area of the rectangle in square centimeters?			
2 points	1 point	2 points			
Question #4 <u>4.MD.3 : DOK 2</u> Which square is bigger: a square with a perimeter of 36 units or a square with an area of 36 square units?	Instructions You must earn <u>at least 8</u> <u>points</u> by doing the problems of your choice. You may work by yourself or in pairs but each person needs to turn in separate work. Circle the questions you have answered.	Question #5 <u>4.MD.3 : DOK 3</u> What is the greatest area you can make with a rectangle that has a perimeter of 24 units?			
2 points		3 points			
Question #6 <u>4.MD.3 : DOK 3</u> What is the greatest perimeter you can make on a rectangle with an area of 24 square units?	Question #7 <u>3.MD.8 : DOK 2</u> What is the area of a square that has a perimeter of 20 units?	Question #8 <u>3.MD.8 : DOK 1</u> Find the rectangle's perimeter.			
3 points	2 point	1 point			

Lessons Learned

Strangely little collaboration

- Students could pick their own problems.
- Few neighbors were working on the same problem.
- Next time had kids pair up and pick the same problem to work on.

The fraction sheet was chaos

- Just because a problem is below grade level, doesn't mean they can do it.
- Make sure students can do a DOK 1 before giving them DOK 2 and 3 problems.

Some problems weren't chosen

- Problem wording wasn't always as clear for students as it was to me.
- Point values need fine tuning

Open Middle Challenging math problems worth solving

Number & Operations—Fractions (2)

Directions: In a standard game of BINGO, the cards are labeled with numbers 1 through 75. If it was possible, which card would you choose: a card with all of the same number or a standard bingo card? Source: Nanette

Open Middle Challenging math problems worth solving

Home	Kinder 🔻	Grade 1 🝷	Grade 2 🔻	Grade 3 🔻	Grade 4 🔻	Grade 5 🔻	Grade 6 🔻	Grade 7 🔻	Grade 8 🔻	High School 🔻	About	Submit
------	----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	---------------	-------	--------

Total Open Middle Problems

Open Middle Author Percentages

Problems by DOK Level

DOK 2

DOK 1

■ DOK 3

□ DOK 4

Note: Data as of March 2015

Problems by Grade Band

Note: Data as of March 2015

Rigor refers to deep, authentic command of mathematical concepts, not making math harder or introducing topics at earlier grades. To help students meet the standards, educators will need to pursue, with equal intensity, three aspects of rigor in the major work of each grade: conceptual understanding, procedural skills and fluency, and application.

Source: http://www.corestandards.org/other-resources/key-shifts-in-mathematics/

