Tustin USD

ROBERT KAPLINSKY

© @robertkaplinsky

Height: 78 inches

Source: Andrew Stadel via www.estimation180.com

Height: 78 inches

Heights

 78 inches

Width:
56 inches

Depth: 18 inches

Sticky note

Recycled Self Stirk Notes Notas autoadhesivas reciclado Notes autoofllantes recyclés

- 18 pads / blocs
- 100 sheets per pad / hojas por bloc / f
- Total 1800 sheets/hojas / feuillets
- 3 in $x 3$ in ($76,2 \mathrm{~mm} \times 76,2 \mathrm{~mm}$)

Dimensions: $5^{7 n} \times 5^{7 n}$

FIVE PRACTICES

Discussion Questions

- "Giving students too much or too little support, or too much direction, can result in a decline in the cognitive demands of the task." (p. 550) Why?
- "By making purposeful choices about the order in which students' work is shared, teachers can maximize the chances that their mathematical goals for the discussion will be achieved." (p. 554) What ways do teachers currently select students? How would you suggest they change their selection process after reading this?
- What challenges might teachers have when trying to "connect" student solutions? (p. 554)

Implementing the Five Practices

1. Anticipate potential student responses to the file cabinet problem.
2. Review the ten student work samples that represent students in your classroom.
3. Figure out which students you would have share their mathematical work.
4. Determine the order you would have those students present their work.
5. Decide on which connections you would emphasize between the students' work and mathematical ideas.

Posters

- At the top of the poster, list the selection strategy used by your group. For example:
- Starting with the most commonly used strategy and moving to one that few students used.
- Starting with a strategy that is more concrete and moving to strategies that are more abstract.
- Incorporating wrong answers to address common misconceptions.
- Attach those students' work to the poster in the order that you would present it.
- Next to the student work list the questions you would ask the student(s) or ideas that you would want to come out as a result of showing that student's work.

Setting Up The Problem

- What do you do when students ask for data/information I don't have, hadn't considered, or forgot to get?
- What do you do when students ask for information that is probably not important or that they don't actually need?

TICNET BOOT:

 12TICRETS=\$500 25 TICRETS $=\$ 10.00$ 50TCKEETS: 82500 20 TICRETS: 550.00 HANE FUNY

Does a hybrid car pay for itself?

Setting Up The Problem

- What do you do when students ask for data/information I don't have, hadn't considered, or forgot to get?
- What do you do when students ask for information that is probably not important or that they don't actually need?
- What do you do when students don't know what to write for what they know and don't know?
- What do you do when you ask for a guess and they don't know?
- What do you do when they don't ask you for information that they need to solve the problem?

Problem Solving Process

- What do you do when students don't use the strategy you anticipated they would use?

TICNET BOOT:

 12TICRETS=\$500 25 TICRETS $=\$ 10.00$ 50TCKEETS: 82500 20 TICRETS: 550.00 HANE FUNY

Problem Solving Process

- What do you do when students don't use the strategy you anticipated they would use?
- What do you do when a student comes up with a strategy for solving the problem that I do not understand?

Problem Solving Process

- What do you do when students don't use the strategy you anticipated they would use?
- What do you do when a student comes up with a strategy for solving the problem that I do not understand?
- What do you do when the answer we calculate does not match with the actual answer?
- What do you do when students get stuck during the problem solving process and are not sure what to do?

Problem Solving Process

- What do you do when students don't use the strategy you anticipated they would use?
- What do you do when a student comes up with a strategy for solving the problem that I do not understand?
- What do you do when the answer we calculate does not match with the actual answer?
- What do you do when students get stuck during the problem solving process and are not sure what to do?
- What do you do when you ask students questions and few to no people are ready to respond?

Problem Solving Process

- What do you do when students don't use the strategy you anticipated they would use?
- What do you do when a student comes up with a strategy for solving the problem that I do not understand?
- What do you do when the answer we calculate does not match with the actual answer?
- What do you do when students get stuck during the problem solving process and are not sure what to do?
- What do you do when you ask students questions and few to no people are ready to respond?
- What do you do when the student conclusions are low quality and/or effort?

|||||||||||||||||||||||||||||||||||||||
 $1015773283 \quad 9456613028$

Also exchudes Starbucks
Also excludes Dyson vacuums ant Miele

 Plan Toys ${ }^{\oplus}$, Quinny ${ }^{\oplus}$, Svan ${ }^{\oplus}$, Teutonia ${ }^{\oplus}$, Under Armour ${ }^{\oplus}$, UPPAbaby ${ }^{\oplus}$, baby furniture, diapers, wipes, formula, baby food or portrait studio services.
 of ${ }^{5} 15$ or more.

BED BATH \&
 BEYON D

Beyond any store of its kind:
OFFICES: 650 LIBERTY AVENUE, UNION, NJ 07083

IA conclusion each conclusion Each Item is good for different Items

If the flem is 447 it is better to use the 20% offcoupon because

$$
\begin{aligned}
& 47-5=\$ 42 \text { oft } 47-20 \%=37.60 \\
& 5 \text { vs } 37.60 \\
& 23-5=18 \\
& \begin{array}{c}
\$ 5 \text { off } \\
18 \mathrm{vs} \\
18.40
\end{array} \\
& 23-20 \%=28.40
\end{aligned}
$$

ange Chicken
Shicken Lo Mein
Cashew Nut Chicken
σ Pungent Chicken
Sweet \& Sour Chicken
Curry Chicken
Lemon Chicken
Vegetable Chicken
Mongolian Beef
Broccoli Beef
Pungent Beef
Sweet \& Sour Pork
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25

Eggplant with Garlic Sauce
5.25
5.25 5.25
σ Broccoli with Garlic Sauce 5.25
\checkmark String Bean with Garlic Sauce 5.25
Vegetable Delight 5.25
Bamboo Fungus Tofu 5.25
Shrimp with Asparagus 6.25
Shrimp with Lobster Sauce 6.25
\checkmark Fish Fillet with Szuchuan Sauce 6.25
\checkmark Fish Fillet with Black Bean Sauce6.25
Crab meat with Asparagus 6.25
Sweet \& Sour Shrimp 6.25

Free to fin chicken lomein
ifs peng al $\$ 25$ and not redeemable
on lung special dinner and
on nd special
party 1 rems
The 10\% capon is Best with high Prices and small orders is best with the free chicken lamerin or chessewonten

You can use the 10% off when you pay 20-24.99 or more the freechicken Lomein when you pay $25-49.99$ or more and the free orange Chitin whengou pay 50 or more

Construction

- Pick two:

Family

- Pick two:

Problem-Based Learning

- Pick two:

Tustin USD

ROBERT KAPLINSKY

© @robertkaplinsky

COMMON CORE STATE STANDARDS INITIATIVE

CCSS.MATH.CONTENT M minmmand of

 Apply the IENT.A.MD.A.3 3 , hat harder or and perimeter formulas for and mathematical meet tequal intensity,
of each grade:
skills and fluency,

Source: http://www.corestandards.org/other-resources/key-shifts-in-mathematics/

What is the perimeter

 of a rectangle that measures 8 units by 4 units?
Components of Rigor

\square Procedural Skill and Fluency

\square Conceptual Understanding

List the dimensions of

a rectangle with a perimeter of 24 units.

Components of Rigor

 [-] Procedural Skill and Fluency[I Conceptual Understanding

Components of Rigor

\square Procedural Skill and Fluency

\square Conceptual Understanding

LIst ur angle with a
of a rectangle with perimeter of 24 units.

Components of Rigor

 [-] Procedural Skill and Fluency[I Conceptual Understanding

71 A basketball court is shaped like a rectangle 20 meters long and 10 meters wide.

What is the perimeter in meters of the court?

A 30 meters
B 50 meters
C 60 meters
D 200 meters

Source: http://www.cde.ca.gov/ta/tg/sr/documents/cstrtqmath3.pdf

What is the perimeter

 of a rectanglethat measures 8 units by 4 units?

Components of Rigor

\square Procedural Skill and Fluency

\square Conceptual Understanding

Components of Rigor

\square Procedural Skill and Fluency

\square Conceptual Understanding

Of all the rectangles with a perimeter of 24 units, which one has the most area?

Of all the rectangles with a perimeter of 24 units, which one
has the most area?

Components of Rigor

 [-] Procedural Skill and Fluency[I Conceptual Understanding

Defining the Problem

- Students appear to demonstrate "deep, authentic command of mathematical concepts" when given commonly used problems.
> However with more challenging problems, the same students seem to no longer demonstrate that command.

Addressing the Problem

- First, we must have a clear understanding about why these problems are different from one another.
$>$ Next, we need to practice implementing these problems such that all students are engaged in a problem that is at the right challenge level for them.
$>$ Last, we need a source that can provide us with a variety of free problems.

Distinguishing Between Depth of Knowledge Levels in Mathematics

Topic	Adding Whole Numbers	Money	Fractions on a Number Line	Area and Perimeter	Subtracting Mixed Numbers
$\begin{aligned} & \hline \text { CCSS } \\ & \text { Standard(s) } \end{aligned}$	- 1.NBT. 4 - 2.NBT. 5	- 2.MD. 8	- 3.NF. 2	$\begin{array}{ll} \hline- & 3 . M D .8 \\ - & \text { 4.MD. } 3 \end{array}$	- 5.NF. 1
DOK 1 Example	Find the sum. $44+27=$	If you have 2 dimes and 3 pennies, how many cents do you have	Which point is located at $\frac{7}{12}$ below?	Find the perimeter of a rectangle that measures 4 units by 8 units.	Find the difference. $5 \frac{1}{2}-4 \frac{2}{3}=$
DOK 2 Example	Fill in the boxes below using the whole numbers 1 through 9, no more than one time each, so that you make a true equation. \square $+53=$ \square	Make 47\$ in three different ways with either quarters, dimes, nickels, or pennies.	Label the point where $\frac{3}{4}$ belongs on the number line below. Be as precise as possible.	List the measurements of three different rectangles that each has a perimeter of 20 units.	Create three different mixed numbers that will make the equation true by using the whole numbers 1 through 9, no more than one time each,. You may reuse the same whole numbers for each of the three mixed numbers. $5 \frac{4}{5}-\square \frac{\square}{\square}=3 \frac{1}{20}$
DOK 3 Example	Make the largest sum by filling in the boxes below using the whole numbers 1 through 9, no more than one time each. \square $+$ \square $=$	Make 47\$ using exactly 5 coins with either quarters, dimes, nickels, or pennies.	Create 5 fractions using the whole numbers 0 through 9 , no more than one time each, as numerators and denominators and correctly place them all on a number line.	What is the greatest area you can make with a rectangle that has a perimeter of 24 units?	Make the smallest difference by filling in the boxes below using the whole numbers 1 through 9, no more than one time each.

ROBERT KAPLINSKY

Topic	Surface Area and Volume	Probability	Transformations	Factoring Quadratics	Quadratics in Vertex Form
$\begin{array}{\|l\|} \hline \text { CCSS } \\ \text { Standard(s) } \end{array}$	- 6.G. 4 - 7.G. 6	- 7.SP. 5 - 7.SP. 7	- 8.G. 1 - G-C0. 5	- A-SSE.3a	- F-IF.7a
DOK 1 Example	Find the surface area of a rectangular prism that measures 3 units by 4 units by 5 units.	What is the probability of rolling a sum of 5 using two 6-sided dice?	Rotate the image below 90° counterclockwise and reflect it across a horizontal line.	Find the factors: $2 x^{2}+7 x+3$	Find the roots and maximum of the quadratic equation below. $y=3(x-4)^{2}-3$
DOK 2 Example	List the measurements of three different rectangular prisms that each has a surface area of 20 square units.	What value(s) have a 1/12 probability of being rolled as the sum of two 6 -sided dice?	List three sequences of transformations that take preimage ABCD to image $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$.	Fill in the blank with integers so that the quadratic expression is factorable. $x^{2}+\ldots x+4$	Create three equations for quadratics in vertex form that have roots at 3 and 5 but have different maximum and/or minimum values.
DOK 3 Example	What is the greatest volume you can make with a rectangular prism that has a surface area of 20 square units?	Fill in the blanks to complete this sentence using the whole numbers 1 through 9 , no more than one time each. Rolling a sum of \qquad on two \qquad -sided dice is the same probability as rolling a sum of \qquad on two \qquad sided dice.	What is the fewest number of transformations needed to take pre-image $A B C D$ to image $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$? Pre-Image Image	Fill the blank by finding the largest and smallest integers that will make the quadratic expression factorable. $2 x^{2}+3 x+$	Create a quadratic equation with the largest maximum value using the whole numbers 1 through 9, no more than one time each. $y=-\square(x-\square)^{2}+\square$

ROBERT KAPLINSKY

More free DOK 2 \& 3 problems available at openmiddle.com | © 2015 Robert Kaplinsky, robertkaplinsky.com

DOK Level Differences

- Level 1: Recall \& Reproduction
- Often a trivial application of facts.
- Requires little to no cognitive effort beyond remembering the right formula.
- Usually only one answer.
- Level 2: Skills \& Concepts
- Usually requires more than one step to solve.
- Often multiple answers.

Level 3: Strategic Thinking

- Usually requires critical thinking about the best way to approach a problem.
- May be multiple answers or a single optimal answer.
- Often challenging enough to make your head hurt.
> Level 4: Exłended Thinking
- In mathematics these are generally represented by performance tasks or problem-based lessons.

Probability

What is the probability of

 rolling a sum of 5 using two 6sided dice?
Probability

What value(s) have a $\frac{1}{12}$ probability of being rolled as the sum of two 6 -sided dice?

Author: Daniel Luevanos

Probability

Fill in the blanks to complete this sentence using the whole numbers 1 through 9, no more than one time each.

Rolling a sum of ___ on two ___sided dice is the same probability as rolling a

 sum of ___ on two ___-sided dice.Authors: Audrey Mendivil, Daniel Luevanos, and Robert Kaplinsky

- What DOK level should I start students off with?
- How do teachers fit these problems into their pacing?
- How do I help prevent students from giving up after trying the problem once or twice?
- Where can I find other DOK 2 and DOK 3 problems?
- How can I share DOK 2 and DOK 3 problems l've made?

Open Middle

Source: Dylan Kane

COMMON CORE STATE STANDARDS

- Grade 1 (6)
- Number \& Operations in Base Ten (3)
- Operations \& Algebraic Thinking (3)
- Grade 2 (6)
- Measurement \& Data (2)
- Number \& Operations in Base Ten (4)
- Grade 3 (11)
- Measurement \& Data (6)
- Number \& Operations in Base Ten (3)
- Number \& Operations-Fractions (2)

COMMON CORE STATE STANDARDS INITIATIVE

Rigor refers to ants, not making math harder or mathematical concep earlier grades. To hed to pursue, with introducing topics a educators will need in major work meet the standards ee aspects of rigor in procedural of each grade: conceptualundion.
skills and

Source: http://www.corestandards.org/other-resources/key-shifts-in-mathematics/

Problem-Based Lesson Resources

- Problem-based lesson search engine:

http://robertkaplinsky.com/prbl-search-engine/

- My lessons: http://www.robertkaplinsky.com/lessons
- Graham Fletcher: http://afletchy.com/3-act-lessons/
- Dan Meyer: http://threeacts.mrmeyer.com
- Andrew Stadel: hittp://tinyurl.com/mrstadel
- Geoff Krall: http://tinyurl.com/PrBLmaps

How Many Sheets Do You Need To Break Out Of Prison?
Goperations with rationalinumiberso ENTE

Robert graduated from University of

Math content expert

California, Los Angeles (UCLA) with a Bachelors of Science in Mathematics. He has taught mathematics to students at the

Lessons elementary, middle, and high school levels. As

All Kinder 1st 2nd 3rd 4th 5th 6th 7th 8th Alg Func Geo Modeling Numb \& Quant Stats \& Prob

How Many Hot Dogs And Buns Should He Buy?

What does - O Calorie LôOK L/KK:

What Does 2000 Calories Look Like?

Robert Kaplinsky's Problem-Based Lessons
File Edit View Insert Format Data Tools Help All changes saved in Drive
두
\$ $\% \quad 123$
Arial
10
$\mathrm{B} \quad I \quad \mathrm{~A}$

- 田
 Σ

Task Name

How Can We Water All Of The Grass?
How Much Money IS That?!
How Much Money Should Dr. Evil Demand?
How Tall Is Mini-Me?
How Did They Make Ms. Pac-Man?
Which Ticket Option Is The Best Deal?
How Far Apart Are The Freeway Exits?
Do We Have Enough Paint?
How Many Stars Are There In The Universe?
What Rides Can You Go On?
Do You Have Enough Money?
Which Bed Bath \& Beyond Coupon Should You Use?
Is Gas Cheaper With Cash Or Credit Card?
Where's The Nearest Toys R Us?
How Sharp Is The iPhone 5's Retina Display?
When Should She Take Her Medicine?
How Biq Are Sunspots?
What Michael's Coupon Should I Use?
Is It Cheaper To Pay Monthly or Annually?
How Biq Is The 2010 Guatemalan Sinkhole?
How Can You Win Every Prize At Chuck E. Cheese's?
How Many Royal Flushes Will You Get?
How Much Does The Paint On A Space Shuttle Weigh?
How Did Motel 6 Go From $\$ 6$ to $\$ 66$?
How Much Does The Aluminum Foil Prank Cost?
How Many Laps Is A 5k Race?
Which Toilet Uses Less Water?
How Did Someone Get A \$103,000 Speeding Ticket In Finland? Which Pizza Is A Better Deal?
How Biq Is The World's Largest Deliverable Pizza?
How Many Sheets Do You Need To Break Out Of Prison?
Do Hybrid Cars Pay For Themselves?
How Many Hot Dogs Did They Eat?!
How Much Purple Ribbon Will You Need? Are We There Yet?
Which Chinese Food Coupon Should I Use?
How Biq Is The Vehicle That Uses Those Tires?
Where Would The Angry Birds Have Landed?
How Many Movies Can You See In One Day?
Which Carrots Should You Buy?
How Fast Can You Throw A Baseball?

B	c	D	E	F	
Concept / Skill	Standard 1	Standard 2	Standard 3	Standard 4	St
Circles, Pythagorean Theorem, trigonometric ratios	7.G. 4	8.G. 7	G-SRT. 8	G-MG. 1	G
Volume of rectangular prism	5.MD. 3	5.MD. 4	5.MD. 5	5.MD.5b	5.
Exponential Growth	N-RN. 2	A-SSE. 1	A-SSE.3c	A-SSE. 4	A-
Scale and Dividing Decimals	5.NF. 5	5.NF.5a	5.NF.5b	6.NS. 3	
Transformations (Rotations, Reflections, and Translations)	8.G. 1	8.G. 2	8.G. 3	8.G. 4	G
Unit Rates and Ratios	6.RP. 2	$6 . \mathrm{RP} .3$	6.RP.3a	6.RP.3b	
Fractions on a Number Line and Subtracting Fractions	3.NF. 2	3.NF.2b	4.NF. 2	4.NF.3a	4.
Area	3.MD. 5	3.MD. 6	3.MD. 7		
Scientific Notation	8.EE. 3	8.EE. 4			
Inequalities and Measurement	2.MD. 1	6.NS.7a	6.NS.7b		
Money	2.MD. 8				
Percent Discount	7.RP. 3				
Percent Discount	7.RP. 3				
Pythagorean Theorem (Distance in coordinate system)	8.G. 8	G-SRT. 8	G-GPE. 7		
Pythagorean Theorem (Length of a side)	8.G. 7	G-SRT. 8	G-GPE. 7		
Operations with Time Intervals	4.MD. 2				
Converting Units, Proportions, and Scientific Notation	5.MD. 1	7.RP. 2	7.G. 4	8.EE. 4	G
Percent Discount	7.RP. 3	A-CED. 3			
Decimal Operations and/or Systems of Equations	5.NBT. 7	8.EE.8c	A-CED. 3	A-REI. 11	F-
Volume of Cylinder	5.MD. 3	5.MD. 4	5.MD. 5	8.G.9	G
Decomposing Numbers and/or Systems of Equations	2.NBT. 7	3.NBT. 2	3.NBT. 3	8.EE.8c	A-
Probability	7.SP. 5	7.SP. 6	7.SP. 7	S-MD. 5	S-
Surface Area	6.G.4	7.G. 6	8.G. 7	G-MG. 1	G
Percent Increase and Compound Interest	7.RP. 3	A-SSE. 1b	F-BF. 1	F-IF.8b	F-
Surface Area and Unit Rates	6.G.4	6.RP. 2	6.RP. 3	7.G.6	
Perimeter	4.MD. 3				
Systems of Equations/Inequalities	8.EE.8c	A-CED. 3	A-REI. 11	F-BF. 1	
Linear Equations	A-CED. 2	F-BF. 1	F-IF. 4	F-IF. 6	
Area or Circle, Square, and Unit Rates	3.MD. 5	3.MD. 6	3.MD. 7	4.MD. 3	6.
Area of Square	3.MD. 5	3.MD. 6	3.MD. 7	4.NBT. 3	4.1
Integer Operations	5.NBT. 6				
Systems of Equations or Rates	6.RP. 2	6.RP. 3	8.EE.8c	A-CED. 3	F-
Linear and Quadratic Functions	8.F. 3	8.F. 4	F-BF. 1	F-BF. 2	F-
Perimeter \& Circumference	3.MD. 8	4.MD. 3	7.G. 4		
Adding Times	3.MD. 1	4.MD. 2			
Percent Discount	7.RP. 3				
Ratio and Proportions	7.RP. 2				
Create Equation From Quadratic Graph	A-CED. 1	F-BF. 1	F-IF. 4	F-IF.7a	F-L
Adding Times	3.MD. 1	4.MD. 2			
Unit Rates	6.RP. 1	6.RP. 2	6.RP. 3		
Converting Units and Unit Rates	5.MD. 1	6.RP. 2			

Google
 gl

Suloscribe to Lessons

Enter your email address below to receive emails whenever a new lesson is published.

Subscribe

Subscribe to Blog

Enter your email address below to receive emails whenever a new blog post is published.

Subscribe

Submit

The links below are the pages that are being searched by the search engine:

- 101 Questions
- Andrew Stadel
- Dan Meyer
- Dane Ehlert
- Emergent Math's Problem Based Curriculum Maps
- Estimation180
- Geoff Krall
m Feeling Lucky

Problem-Based Lesson Search Engine

This search engine searches all of the sites below to quickly help you find a problem-based lesson (also called 3-Act Task, mathematical modeling, or application problem):

The link belo

Problem-Based Fessons

101qs.com

Andrew Stadel

Dan Meyer

Mathalicious

Problem Based Curriculum Maps

Call to Action

\triangle Commit to one of these choices:

- Implement a problem-based lesson that is at or below grade level in your class(es) within the first two weeks.
-Implement a single DOK 2 or DOK 3 problem from openmiddle.com in your class(es) within the first two weeks.

