Hillsboro SD

ROBERT KAPLINSKY
y @robertkaplinsky NHA

$$
\begin{gathered}
\text { There are } 125 \\
\text { sheep and } 5 \text { dogs } \\
\text { in a flock. How old } \\
\text { is the shepherd? }
\end{gathered}
$$

Of the 32 students I interviewed...

- 75% of them gave me numerical responses
- 2 students calculated the answer to be $130(125+5)$
- 2 students calculated the answer to be 120 (125-5)
- 12 students calculated the answer to be $25(125 \div 5)$
- 0 students calculated the answer to be 625 (125×5)
- 4 students stated that they guessed their answer (90, 5,42 , and 50)
- 4 students tried to divide 125 by 5 but could not correctly implement the procedure

Takeaways

- Making sense of mathematics
- Intellectual autonomy
- Intellectual autonomy is about being able to think for yourself and not being dependent on others for the direction and control of one's thinking.

What Does the NHTSA Say?

Kev Statistics and Consumer Insights:

- Motor vehicle crashes are the leading cause of death for children age 1 through 12 years old. ${ }^{1}$

According to a NHTSA study, 3 out of 4 kids are not as secure in the car as they should be because their car seats are not being used correctly.

${ }^{1}$ Source: Based on the latest mortality data currently available from the CDC's National Center for Health Statistics.

- "because they have their child in the right seat"
- "because their car seats are not being used correctly"

IF YOUR CHILD IS IN THE RIGHT CAR SEAT.
Ad
council
VISIT SAFERCAR.GOV/THERIGHTSEAT

KNOW FOR SURE

IF YOUR CHILD IS IN THE RIGHT CAR SEAT.

VISIT SAFERCAR.GOV/THERIGHTSEAT

 NHTSA
How Many Stacked Cups Do You Need?

You want to stack paper, plastic, or foam cups one inside the next so that the height of the stack is equal to your math teacher's height. How can you determine the number of cups you would need?

Start by listing in the space the questions you will need to answer in order to tackle the problem. Then use your own paper to complete the task. Be sure to write down all your data and assumptions. Then use graphs, numbers, words, or algebra to explain how you reached your conclusion.

211.8 cm

Source:
Andrew Stadel estimation180.com

CUPS:

Source: Andrew Stadel - estimation 180.com

Cups	Height
1	9.2 cm
2	10.5 cm
3	11.8 cm
4	13.1 cm

WHAT IS THE • College readiness PURPOSE OF
 A K-12
 EDUGATION?
 - ACT National Curriculum
 Survey
 - Surveyed 9,937 educators

"Well" or "Very Well" Prepared for College

Source: http://www.act.org/research/policymakers/pdf/NCS-PolicySummary201 2.pdf

WHAT IS THE • College readiness PURPOSE OF
A K-12
EDUCATION?
- Career readiness
- Association of American Colleges and Universities survey
- Surveyed over 300 employers with at least 25 employees and many new hires

Critical thinking and
analytical reasoning skills
Analyzing and solving
complex problems
Communicating
effectively orally
and in writing
Applying knowledge and
skills to real-world setting
Working w/ numbers and
understanding statistics

New Student Expectations

ELA, Social Studies, and Tech Subjects

1. Demonstrate independence.
2. Build strong content knowledge.
3. Respond to the varying demands of audience, task, purpose, and discipline.
4. Comprehend as well as critique.
5. Value evidence.
6. Use technology and digital media strategically and capably.
7. Understand other perspectives and cultures.

Science

1. Ask questions (for science) and defining problems (for engineering).
2. Develop and use models.
3. Plan and carry out investigations.
4. Analyze and interpret data.
5. Use mathematics and computational thinking.
6. Construct explanations (for science) and design solutions (for engineering).
7. Engage in argument from evidence.
8. Obtain, evaluate, and communicate information.

Mathematics

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

Sources: CCSS ELA student portraits, NGSS practices, CCSS mathematics practice

M1. Make sense of problems \& persevere in solving them. M2. Reason abstractly \& quantitatively.
M7. Look for \& make use of structure.
M8. Look for \& express regularity in repeated reasoning.

Sources: CCSS ELA student portraits, NGSS practices, CCSS mathematics practice

E2. Build a strong base of knowledge through content rich texts. E5. Read, write, and speak grounded in evidence.
M3 and E4. Construct viable arguments \& critique reasoning of others. S7. Engage in argument from evidence.

SCIENCE

S2. Develop and use models. S5. Use mathematics \& computational thinking. M4. Model with mathematics. M6. Attend to precision. Problems.
S3. Plan \& carry out Investigations.

S1. Ask questions \& define

S4. Analyze \& interpret data.
S6. Construct explanations \& design solutions.

S8. Obtain, evaluate \& communicate Information.
E3. Obtain, synthesize, and report findings clearly and effectively in response to task and purpose.

E1. Demonstrate independence in reading complex texts, and writing and speaking about them.
E7. Come to understand other perspectives \& cultures through reading, listening, and collaborations.

WHAT
 - when students can

 DOES IT LOOK LIKE.. work with numbers but cannot:-critically think
-analyze and solve complex problems

- applying knowledge and skills to realworld settings

How far apart are the exits on this freeway: Jct 90 and Jefferson Blvd?

COMMON CORE STATE STANDARDS INITIATIVE

CCSS.MATH.CONTENT M minmmand of

 Apply the IENT.A.MD.A.3 3 , hat harder or and perimeter formulas for and mathematical meet tequal intensity,
of each grade:
skills and fluency,

Source: http://www.corestandards.org/other-resources/key-shifts-in-mathematics/

What is the perimeter

 of a rectangle that measures 8 units by 4 units?
Components of Rigor

\square Procedural Skill and Fluency

\square Conceptual Understanding

List the dimensions of

a rectangle with a perimeter of 24 units.

Components of Rigor

 [-] Procedural Skill and Fluency[I Conceptual Understanding

Components of Rigor

\square Procedural Skill and Fluency

\square Conceptual Understanding

LIst ur angle with a
of a rectangle with perimeter of 24 units.

Components of Rigor

 [-] Procedural Skill and Fluency[I Conceptual Understanding

71 A basketball court is shaped like a rectangle 20 meters long and 10 meters wide.

What is the perimeter in meters of the court?

A 30 meters
B 50 meters
C 60 meters
D 200 meters

Source: http://www.cde.ca.gov/ta/tg/sr/documents/cstrtqmath3.pdf

What is the perimeter

 of a rectanglethat measures 8 units by 4 units?

Components of Rigor

\square Procedural Skill and Fluency

\square Conceptual Understanding

Components of Rigor

\square Procedural Skill and Fluency

\square Conceptual Understanding

Of all the rectangles with a perimeter of 24 units, which one has the most area?

Of all the rectangles with a perimeter of 24 units, which one
has the most area?

Components of Rigor

 [-] Procedural Skill and Fluency[I Conceptual Understanding

Defining the Problem

- Students appear to demonstrate "deep, authentic command of mathematical concepts" when given commonly used problems.
> However with more challenging problems, the same students seem to no longer demonstrate that command.

Addressing the Problem

- First, we must have a clear understanding about why these problems are different from one another.
\checkmark Next, we need to practice implementing these problems such that all students are engaged in a problem that is at the right challenge level for them.
> Last, we need sources that can provide us with a variety of problems.

Distinguishing Between Depth of Knowledge Levels in Mathematics

Topic	Adding Whole Numbers	Money	Fractions on a Number Line	Area and Perimeter	Subtracting Mixed Numbers
$\begin{aligned} & \hline \text { CCSS } \\ & \text { Standard(s) } \end{aligned}$	- 1.NBT. 4 - 2.NBT. 5	- 2.MD. 8	- 3.NF. 2	$\begin{array}{ll} \hline- & 3 . M D .8 \\ - & \text { 4.MD. } 3 \end{array}$	- 5.NF. 1
DOK 1 Example	Find the sum. $44+27=$	If you have 2 dimes and 3 pennies, how many cents do you have	Which point is located at $\frac{7}{12}$ below?	Find the perimeter of a rectangle that measures 4 units by 8 units.	Find the difference. $5 \frac{1}{2}-4 \frac{2}{3}=$
DOK 2 Example	Fill in the boxes below using the whole numbers 1 through 9, no more than one time each, so that you make a true equation. \square $+53=$ \square	Make 47\$ in three different ways with either quarters, dimes, nickels, or pennies.	Label the point where $\frac{3}{4}$ belongs on the number line below. Be as precise as possible.	List the measurements of three different rectangles that each has a perimeter of 20 units.	Create three different mixed numbers that will make the equation true by using the whole numbers 1 through 9, no more than one time each,. You may reuse the same whole numbers for each of the three mixed numbers. $5 \frac{4}{5}-\square \frac{\square}{\square}=3 \frac{1}{20}$
DOK 3 Example	Make the largest sum by filling in the boxes below using the whole numbers 1 through 9, no more than one time each. \square $+$ \square $=$	Make 47\$ using exactly 5 coins with either quarters, dimes, nickels, or pennies.	Create 5 fractions using the whole numbers 0 through 9 , no more than one time each, as numerators and denominators and correctly place them all on a number line.	What is the greatest area you can make with a rectangle that has a perimeter of 24 units?	Make the smallest difference by filling in the boxes below using the whole numbers 1 through 9, no more than one time each.

ROBERT KAPLINSKY

Topic	Surface Area and Volume	Probability	Transformations	Factoring Quadratics	Quadratics in Vertex Form
$\begin{array}{\|l\|} \hline \text { CCSS } \\ \text { Standard(s) } \end{array}$	- 6.G. 4 - 7.G. 6	- 7.SP. 5 - 7.SP. 7	- 8.G. 1 - G-C0. 5	- A-SSE.3a	- F-IF.7a
DOK 1 Example	Find the surface area of a rectangular prism that measures 3 units by 4 units by 5 units.	What is the probability of rolling a sum of 5 using two 6-sided dice?	Rotate the image below 90° counterclockwise and reflect it across a horizontal line.	Find the factors: $2 x^{2}+7 x+3$	Find the roots and maximum of the quadratic equation below. $y=3(x-4)^{2}-3$
DOK 2 Example	List the measurements of three different rectangular prisms that each has a surface area of 20 square units.	What value(s) have a 1/12 probability of being rolled as the sum of two 6 -sided dice?	List three sequences of transformations that take preimage ABCD to image $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$.	Fill in the blank with integers so that the quadratic expression is factorable. $x^{2}+\ldots x+4$	Create three equations for quadratics in vertex form that have roots at 3 and 5 but have different maximum and/or minimum values.
DOK 3 Example	What is the greatest volume you can make with a rectangular prism that has a surface area of 20 square units?	Fill in the blanks to complete this sentence using the whole numbers 1 through 9 , no more than one time each. Rolling a sum of \qquad on two \qquad -sided dice is the same probability as rolling a sum of \qquad on two \qquad sided dice.	What is the fewest number of transformations needed to take pre-image $A B C D$ to image $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$? Pre-Image Image	Fill the blank by finding the largest and smallest integers that will make the quadratic expression factorable. $2 x^{2}+3 x+$	Create a quadratic equation with the largest maximum value using the whole numbers 1 through 9, no more than one time each. $y=-\square(x-\square)^{2}+\square$

ROBERT KAPLINSKY

More free DOK 2 \& 3 problems available at openmiddle.com | © 2015 Robert Kaplinsky, robertkaplinsky.com

DOK Level Differences

- Level 1: Recall \& Reproduction
- Often a trivial application of facts.
- Requires little to no cognitive effort beyond remembering the right formula.
- Usually only one answer.
- Level 2: Skills \& Concepts
- Usually requires more than one step to solve.
- Often multiple answers.

Level 3: Strategic Thinking

- Usually requires critical thinking about the best way to approach a problem.
- May be multiple answers or a single optimal answer.
- Often challenging enough to make your head hurt.
> Level 4: Exłended Thinking
- In mathematics these are generally represented by performance tasks or problem-based lessons.

Probability

What is the probability of

 rolling a sum of 5 using two 6sided dice?
Probability

What value(s) have a $\frac{1}{12}$ probability of being rolled as the sum of two 6 -sided dice?

Author: Daniel Luevanos

Probability

Fill in the blanks to complete this sentence using the whole numbers 1 through 9, no more than one time each.

Rolling a sum of ___ on two ___sided dice is the same probability as rolling a

 sum of ___ on two ___-sided dice.Authors: Audrey Mendivil, Daniel Luevanos, and Robert Kaplinsky

- What DOK level should I start students off with?
- How do teachers fit these problems into their pacing?
- How do I help prevent students from giving up after trying the problem once or twice?
- Where can I find other DOK 2 and DOK 3 problems?
- How can I share DOK 2 and DOK 3 problems l've made?

Open Middle

Source: Dylan Kane

COMMON CORE STATE STANDARDS

- Grade 1 (6)
- Number \& Operations in Base Ten (3)
- Operations \& Algebraic Thinking (3)
- Grade 2 (6)
- Measurement \& Data (2)
- Number \& Operations in Base Ten (4)
- Grade 3 (11)
- Measurement \& Data (6)
- Number \& Operations in Base Ten (3)
- Number \& Operations-Fractions (2)

COMMON CORE STATE STANDARDS INITIATIVE

Rigor refers to ants, not making math harder or mathematical concep earlier grades. To hed to pursue, with introducing topics a educators will need in major work meet the standards ee aspects of rigor in procedural of each grade: conceptualundion.
skills and

Source: http://www.corestandards.org/other-resources/key-shifts-in-mathematics/

