Wentzville
 School Distric†

ROBERT KAPLINSKY
© @robertkaplinsky

Goals

\square Engaging problem solving
\square Real world problem-based learning
\square Higher depth of knowledge problems
\square Better implementation
Improve our ability to ask questions
\square Practice preparing to implement a lesson
\square Figure out how to deal with uncomfortable situations

DOUBLE-DOUBLE

2004-10-31

YOUR GUEST NUMBER IS
98

$$
\begin{aligned}
& \text { IN-N=OUT BURGER LAS VEGAS EASTERN } \\
& 2004=10-31 \\
& 1651598 \\
& 8: 21 \text { PM }
\end{aligned}
$$

Cashier: SAM

GLEST
 \#: 98

Counter-Eat In

 DblDbl98 Meat Pty KChz
2.65
88.20

Counter-Eat In
TAX 7.50 x
90.85

Amount Due
6.81

CASH TENDEA
Change
$\$ 97.66$
$\$.00$
$2004-10-31$

Cashier: SAM

GLEST
 H: 98

Counter-Eat In

Dblobl

98 Meat Pty XChz

2.65
88.20

Counter-Eat In TAX 7,50x 90.85

Amount Due
6.81
97.66

CASH TENOER Change
$\$ 97.66$ $\$.00$

2008-10-31

$$
8: 21 \text { PM }
$$

		¢
Hamburger w/Onion	243	390
Cheeseburger w/Onion	268	480
Double-Double w/Onion	330	670

Layers	Cost
1	$\$ 1.75$
2	$\$ 2.65$
3	$\$ 3.55$
4	$\$ 4.45$
\cdot	\cdot
\cdot	\cdot
20	$\$ 18.85$
\cdot	\cdot
\cdot	\cdot
100	$\$ 90.85$
\cdot	\cdot
\cdot	$\$ 1.75+(\mathrm{N}-1)^{*} \$ 0.90$
N	

bun + produce + meat + cheese + meat + cheese $=\$ 2.65$
bun + produce + meat + cheese
= \$1.75
meat + cheese $=\$ 0.90$

The Reality

- Students needed guidance to figure out a layer's cost
- Not every class is ready to go straight to 100×100
- Common wrong answers included:
- $\$ 175.00$ ($\$ 1.75 \times 100$ cheeseburgers)
- \$132.50 (\$2.65 x 50 Double-Doubles)
- Students had equations that had more than X patties
- Students were surprised to see three different equations:
- Starting with a Double-Double
- Starting with a cheeseburger
- Starting with produce and bun only

The only difference between a double double and a cheeseburger is one patty and one slice of cheese so you subtract the prices of the two to find the price of only one patty $\&$ cheese. You then use that number $(.90)$ \& subtract it from the cost of one whole cheeseburger to find the price of all the extra stuff. Multiply by 100

What is your conclusion?
A 100×100 at in-n-out cost $\$ 90.85$. To solve that, you start by subtracting the price of a cheeseburger from a double double. The answer (.90) is the price of a patty and cheese slice. You multiply (.90) by one less patty than what you want. $(x-1)$, and you add the price of a cheeseburger (1.75). You end up with the eq. $[y=.90(x-1)+1.75$.].
For the 100×100, you plug in 100 to the (x) and you end Up with $\$ 90.85$.

$$
\left[\begin{array}{l}
y=.90(100-1)+1.75 \\
y=89.10+1.75 \\
y=90.85
\end{array}\right]
$$

What 15 your conclusion?
Figure the price difference from the Double-Double with a cheeseburger. Then find out the prize for the produce and cheese-bees. get total into 90.85 NHA

Math Question

- Solve the problem on your own. Do not work or share your answer with anyone else.
- You will have 30 seconds to complete it.
- Write your answer down on a paper.

$$
\begin{gathered}
\text { There are } 125 \\
\text { sheep and } 5 \text { dogs } \\
\text { in a flock. How old } \\
\text { is the shepherd? }
\end{gathered}
$$

Of the 32 students I interviewed...

- 75% of them gave me numerical responses
- 2 students calculated the answer to be $130(125+5)$
- 2 students calculated the answer to be 120 (125-5)
- 12 students calculated the answer to be $25(125 \div 5)$
- 0 students calculated the answer to be 625 (125×5)
- 4 students stated that they guessed their answer (90, 5,42 , and 50)
- 4 students tried to divide 125 by 5 but could not correctly implement the procedure

Takeaways

- Making sense of mathematics
- Intellectual autonomy
- Intellectual autonomy is about being able to think for yourself and not being dependent on others for the direction and control of one's thinking.

What Does the NHTSA Say?

Kev Statistics and Consumer Insights:

- Motor vehicle crashes are the leading cause of death for children age 1 through 12 years old. ${ }^{1}$

According to a NHTSA study, 3 out of 4 kids are not as secure in the car as they should be because their car seats are not being used correctly.

${ }^{1}$ Source: Based on the latest mortality data currently available from the CDC's National Center for Health Statistics.

- "because they have their child in the right seat"
- "because their car seats are not being used correctly"

IF YOUR CHILD IS IN THE RIGHT CAR SEAT.
Ad
council
VISIT SAFERCAR.GOV/THERIGHTSEAT

KNOW FOR SURE

IF YOUR CHILD IS IN THE RIGHT CAR SEAT.

VISIT SAFERCAR.GOV/THERIGHTSEAT

 NHTSA
WHAT IS THE • College readiness PURPOSE OF
 A K-12
 EDUGATION?
 - ACT National Curriculum
 Survey
 - Surveyed 9,937 educators

"Well" or "Very Well" Prepared for College

Source: http://www.act.org/research/policymakers/pdf/NCS-PolicySummary201 2.pdf

WHAT IS THE • College readiness PURPOSE OF
A K-12
EDUCATION?
- Career readiness
- Association of American Colleges and Universities survey
- Surveyed over 300 employers with at least 25 employees and many new hires

Critical thinking and
analytical reasoning skills
Analyzing and solving
complex problems
Communicating
effectively orally
and in writing
Applying knowledge and
skills to real-world setting
Working w/ numbers and
understanding statistics

WHAT ISN'T MATHEMATICAL MODEHNG?

- It is not modeling in the sense of, "I do; now you do."
- It is not modeling in the sense of using manipulatives to represent mathematical concepts.
- It is not modeling in the sense of a "model" being just a graph, equation, or function.
- It is not just starting with a real world situation and solving a math problem.
- It is not beginning with the mathematics and then moving to the real world.

PROBLEM- • How long do problem based

 lessons take? problem-based learning?- Do teachers use problem-based lessons to introduce a topic or after you've already taught it?
- How is problem-based learning assessed?
- How much time does it take to create a problem-based lesson?

WHAT DOES IT LOOK LIKE...

- when students have procedural skill but not conceptual understanding or the ability to apply mathematics?
- when students can work with numbers but cannot:
- critically think
- applying knowledge and skills to real-world settings
- analyze and solve complex problems

How far apart are the exits on this freeway: Jct 90 and Jefferson Blvd?

The Four C's

- Communication - Curiosity
- 6.G. 4 - Represent threedimensional figures using nets made up of rectangles and triangles, and use the nets to find the surface area of these figures.
7.G.6 - Solve real-world and mathematical problems involving area, volume and surface area.
- 8.G.9 - Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and mathematical problems.
- G-GMD.3-Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.
- G-c0. 6 Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure.
- A-CED. 1 - Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.
- F-IF.7a - Graph linear and quadratic functions and show intercepts, maxima, and minima.
6.RP.2 - Understand the concept of a unit rate

The Four C's

- Communication
- Curiosity
- Critical Thinking

Problem Solving Framework

- Inspired by Geoff Krall's resources at emergentmath.com

The Four C's

- Communication
- Curiosity
- Critical Thinking
- Content Knowledge

Goals

\square Engaging problem solving
\square Real world problem-based learning
\square Higher depth of knowledge problems
\square Better implementation
Improve our ability to ask questions
\square Practice preparing to implement a lesson
\square Figure out how to deal with uncomfortable situations

Questioning Scenarios

- The activity begins with teachers in groups of three taking the roles of teacher, student, or observer.
- The individuals playing the role of teacher and student each receive a slip of paper describing their scenario.
- The individual playing the role of observer waits to record all of the teacher's questions to the student.
- Once the activity begins, the teacher will talk to the student in the context of the scenario they read about on the slips of paper.

What did you get for the area of the circle with a radius of 2 units?

Great. Do you have any questions?

What did you get for the area of the circle with a radius of 2 units?

Great. How did you get your answer?

The radius is 2 so I plugged it into 2 pi r and got 4 pi.

Goals

\square Engaging problem solving
\square Real world problem-based learning
\square Higher depth of knowledge problems
\square Better implementation
I Improve our ability to ask questions
\square Practice preparing to implement a lesson
\square Figure out how to deal with uncomfortable situations

COMMON CORE STATE STANDARDS INITIATIVE

CCSS.MATH.CONTENT M minmmand of

 Apply the IENT.A.MD.A.3 3 , hat harder or and perimeter formulas for and mathematical meet tequal intensity,
of each grade:
skills and fluency,

Source: http://www.corestandards.org/other-resources/key-shifts-in-mathematics/

What is the perimeter

 of a rectangle that measures 8 units by 4 units?
Components of Rigor

\square Procedural Skill and Fluency

\square Conceptual Understanding

List the dimensions of

a rectangle with a perimeter of 24 units.

Components of Rigor

 [-] Procedural Skill and Fluency[I Conceptual Understanding

Components of Rigor

\square Procedural Skill and Fluency

\square Conceptual Understanding

LIst ur angle with a
of a rectangle with perimeter of 24 units.

Components of Rigor

 [-] Procedural Skill and Fluency[I Conceptual Understanding

71 A basketball court is shaped like a rectangle 20 meters long and 10 meters wide.

What is the perimeter in meters of the court?

A 30 meters
B 50 meters
C 60 meters
D 200 meters

Source: http://www.cde.ca.gov/ta/tg/sr/documents/cstrtqmath3.pdf

What is the perimeter

 of a rectanglethat measures 8 units by 4 units?

Components of Rigor

\square Procedural Skill and Fluency

\square Conceptual Understanding

Components of Rigor

\square Procedural Skill and Fluency

\square Conceptual Understanding

Of all the rectangles with a perimeter of 24 units, which one has the most area?

Of all the rectangles with a perimeter of 24 units, which one
has the most area?

Components of Rigor

 [-] Procedural Skill and Fluency[I Conceptual Understanding

Defining the Problem

- Students appear to demonstrate "deep, authentic command of mathematical concepts" when given commonly used problems.
> However with more challenging problems, the same students seem to no longer demonstrate that command.

Addressing the Problem

- First, we must have a clear understanding about why these problems are different from one another.
- Next, we need to practice using these problems so that we understand how students may react to them.
$>$ Last, we need a source that can provide us with a variety of free problems.

Distinguishing Between Depth of Knowledge Levels in Mathematics

Topic	Adding Whole Numbers	Money	Fractions on a Number Line	Area and Perimeter	Subtracting Mixed Numbers
$\begin{aligned} & \hline \text { CCSS } \\ & \text { Standard(s) } \end{aligned}$	- 1.NBT. 4 - 2.NBT. 5	- 2.MD. 8	- 3.NF. 2	$\begin{array}{ll} \hline- & 3 . M D .8 \\ - & \text { 4.MD. } 3 \end{array}$	- 5.NF. 1
DOK 1 Example	Find the sum. $44+27=$	If you have 2 dimes and 3 pennies, how many cents do you have	Which point is located at $\frac{7}{12}$ below?	Find the perimeter of a rectangle that measures 4 units by 8 units.	Find the difference. $5 \frac{1}{2}-4 \frac{2}{3}=$
DOK 2 Example	Fill in the boxes below using the whole numbers 1 through 9, no more than one time each, so that you make a true equation. \square $+53=$ \square	Make 47\$ in three different ways with either quarters, dimes, nickels, or pennies.	Label the point where $\frac{3}{4}$ belongs on the number line below. Be as precise as possible.	List the measurements of three different rectangles that each has a perimeter of 20 units.	Create three different mixed numbers that will make the equation true by using the whole numbers 1 through 9, no more than one time each,. You may reuse the same whole numbers for each of the three mixed numbers. $5 \frac{4}{5}-\square \frac{\square}{\square}=3 \frac{1}{20}$
DOK 3 Example	Make the largest sum by filling in the boxes below using the whole numbers 1 through 9, no more than one time each. \square $+$ \square $=$	Make 47\$ using exactly 5 coins with either quarters, dimes, nickels, or pennies.	Create 5 fractions using the whole numbers 0 through 9 , no more than one time each, as numerators and denominators and correctly place them all on a number line.	What is the greatest area you can make with a rectangle that has a perimeter of 24 units?	Make the smallest difference by filling in the boxes below using the whole numbers 1 through 9, no more than one time each.

ROBERT KAPLINSKY

Topic	Surface Area and Volume	Probability	Transformations	Factoring Quadratics	Quadratics in Vertex Form
$\begin{array}{\|l\|} \hline \text { CCSS } \\ \text { Standard(s) } \end{array}$	- 6.G. 4 - 7.G. 6	- 7.SP. 5 - 7.SP. 7	- 8.G. 1 - G-C0. 5	- A-SSE.3a	- F-IF.7a
DOK 1 Example	Find the surface area of a rectangular prism that measures 3 units by 4 units by 5 units.	What is the probability of rolling a sum of 5 using two 6-sided dice?	Rotate the image below 90° counterclockwise and reflect it across a horizontal line.	Find the factors: $2 x^{2}+7 x+3$	Find the roots and maximum of the quadratic equation below. $y=3(x-4)^{2}-3$
DOK 2 Example	List the measurements of three different rectangular prisms that each has a surface area of 20 square units.	What value(s) have a 1/12 probability of being rolled as the sum of two 6 -sided dice?	List three sequences of transformations that take preimage ABCD to image $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$.	Fill in the blank with integers so that the quadratic expression is factorable. $x^{2}+\ldots x+4$	Create three equations for quadratics in vertex form that have roots at 3 and 5 but have different maximum and/or minimum values.
DOK 3 Example	What is the greatest volume you can make with a rectangular prism that has a surface area of 20 square units?	Fill in the blanks to complete this sentence using the whole numbers 1 through 9 , no more than one time each. Rolling a sum of \qquad on two \qquad -sided dice is the same probability as rolling a sum of \qquad on two \qquad sided dice.	What is the fewest number of transformations needed to take pre-image $A B C D$ to image $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$? Pre-Image Image	Fill the blank by finding the largest and smallest integers that will make the quadratic expression factorable. $2 x^{2}+3 x+$	Create a quadratic equation with the largest maximum value using the whole numbers 1 through 9, no more than one time each. $y=-\square(x-\square)^{2}+\square$

ROBERT KAPLINSKY

More free DOK 2 \& 3 problems available at openmiddle.com | © 2015 Robert Kaplinsky, robertkaplinsky.com

$$
\begin{aligned}
& \text { Complicated } \\
& \text { or Complex? }
\end{aligned}
$$

DOK Flowchart for Questions

Depth of Knowledge (DOK) Flowchart for 2uestions

Are students recalling something they've learned before?

Yes
DOK
1

Not exactly
Is it a skill or concept? (EG cause/effect, inferring, summarizing)

Not exactly Look at verbs on DOK whee
Is this a question or task that is
new/fairly new to students?

Yes

DOK
3
No, they've been investigating it for an extended time (EG PBL)

DOK
4

DOK Level Differences

- Level 1: Recall \& Reproduction
- Often a trivial application of facts.
- Requires little to no cognitive effort beyond remembering the right formula.
- Usually only one answer.
- Level 2: Skills \& Concepts
- Usually requires more than one step to solve.
- Often multiple answers.

Level 3: Strategic Thinking

- Usually requires critical thinking about the best way to approach a problem.
- May be multiple answers or a single optimal answer.
- Often challenging enough to make your head hurt.
> Level 4: Exłended Thinking
- In mathematics these are generally represented by performance tasks or problem-based lessons.

Probability

What is the probability of

 rolling a sum of 5 using two 6sided dice?
Probability

What value(s) have a $\frac{1}{12}$ probability of being rolled as the sum of two 6 -sided dice?

Author: Daniel Luevanos

Probability

Fill in the blanks to complete this sentence using the whole numbers 1 through 9, no more than one time each.

Rolling a sum of ___ on two ___sided dice is the same probability as rolling a

 sum of ___ on two ___-sided dice.Authors: Audrey Mendivil, Daniel Luevanos, and Robert Kaplinsky

Adding Decimals

Use the numbers 1

 through 9, at most one time each, to fill in the boxes and make three decimals whose sum is as close to 1 as possible.

JUST BRAMN

 I=ASERS?
Sail away

Two men and two women want to sail to an island.

How can all four of them get to the island?

[^0]46

Make the largest sum by filling in the boxes below using the whole numbers 1 through 9, no more than one time each.

=
@rob tease more

1:27 PI
@robertkaplinsky @openmiddle I think the purpose is the difference. OMP are designed to learn important math. BT are designed to trick! 5:47 PM - 4 May 2015 ↔ 七7 \star

Mike Flynn
@MikeFlynn55
@fawnpnguyen @robertkaplinsky @openmiddle I agree OMP allow for multiple approaches and/or solutions where BT seemed closed most of the time

1:44 PM - 4 May 2015

Depth of Knowledge - Level One

What is the circle's circumference? $\pi \approx 3.14$

70 This circular stage has a radius of 25 meters.

Which equation could be used to find the area of the stage in square meters?

A $\quad A=25 \pi$
B $\quad A=50 \pi$
C $\quad A=\pi \cdot 25^{2}$
D $\quad A=\pi \cdot 50^{2}$

72 The top part of this hat is shaped like a cylinder with a diameter of 7 inches.

Which measure is closest to the length of the band that goes around the outside of the hat?

A 10.1 inches
B 11.0 inches
C 22.0 inches
D 38.5 inches

Source: $6^{\text {th }}$ Grade CST Released Test Questions - http://www.cde.ca.gov/ta/tg/sr/documents/cstrtqmath6.pdf

Student Data Facts

- 396 seventh grade students were assessed
- 68.26% correctly answered the circumference question
- 78.59% correctly answered the area question

Depth of Knowledge - Level Two

Which circle is bigger? How do you know?
Circle A
Circle B

Area $=36$ units 2

$$
\begin{array}{cc}
C=\pi \cdot 2 \cdot r & A=\pi \cdot r^{2} \\
36 \approx 6.28 \cdot r & A \approx 3.14 \cdot 5.73^{2} \\
\frac{36}{6.28} \approx r & A \approx 3.14 \cdot 32.83 \\
5.73 \text { units } \approx r & A \approx 103.15 \text { units }^{2}
\end{array}
$$

Circumference $=36$ units

SBAC Constructed Response Rubric

- For full credit (2 points):
- Student reaches the correct conclusion. AND
- Student provides sufficient reasoning to support this conclusion.
- For partial credit (1 point):
- Student reaches the correct conclusion but does not provide sufficient reasoning to support this conclusion. OR
- Student does not reach the correct conclusion but provides reasoning to support this conclusion that contains a minor conceptual or computation error.

Student Data Facts

- Of the 396 seventh grade students who were assessed, 12.12% earned two points on the DOK 2 question.
- 97.92% of the students who correctly answered the DOK 2 question also correctly answered both of the two DOK 1 questions.
- 10.61% of the students who correctly answered both of the two DOK 1 questions also correctly answered the DOK 2 question.

More Student Data Facts

- 28.28% of the students earned only one point.
- All of them earned one point by choosing Circle B and providing insufficient reasoning.
- 59.59\% of the students earned no points.
- When will students ever use this?
- What DOK level should I start students off with?
- How do teachers fit these problems into their pacing?
- How do I help prevent students from giving up after trying the problem once or twice?
- Where can I find other DOK 2 and DOK 3 problems or submit ones l've made?

Goals

Engaging problem solving
\triangle Real world problem-based learning
U Higher depth of knowledge problems
\square Better implementation
IImprove our ability to ask questions
\square Practice preparing to implement a lesson
\square Figure out how to deal with uncomfortable situations

Open Middle

Source: Dylan Kane

COMMON CORE STATE STANDARDS

- Grade 1 (6)
- Number \& Operations in Base Ten (3)
- Operations \& Algebraic Thinking (3)
- Grade 2 (6)
- Measurement \& Data (2)
- Number \& Operations in Base Ten (4)
- Grade 3 (11)
- Measurement \& Data (6)
- Number \& Operations in Base Ten (3)
- Number \& Operations-Fractions (2)

Problem-Based Lesson Resources

- Problem-based lesson search engine:

http://robertkaplinsky.com/prbl-search-engine/

- My lessons: http://www.robertkaplinsky.com/lessons
- Dan Meyer: http://threeacts.mrmeyer.com
- Andrew Stadel: http://tinyurl.com/mrstadel
- Geoff Krall: http://tinyurl.com/PrBLmaps
- Dan Meyer's TED talk: http://tinyurl.com/meyer-TED

How Many Sheets Do You Need To Break Out Of Prison?
Goperations with rationalinumiberso ENTE

Robert graduated from University of

Math content expert

California, Los Angeles (UCLA) with a Bachelors of Science in Mathematics. He has taught mathematics to students at the

Lessons elementary, middle, and high school levels. As

How Much Is One Third Of A Cup Of Butter?

How Do Skytypers Write Messages?

Robert Kaplinsky's Problem-Based Lessons
File Edit View Insert Format Data Tools Help All changes saved in Drive
두
\$ $\% \quad 123$
Arial
10
$\mathrm{B} \quad I \quad \mathrm{~A}$

- 田
 Σ

Task Name

How Can We Water All Of The Grass?
How Much Money IS That?!
How Much Money Should Dr. Evil Demand?
How Tall Is Mini-Me?
How Did They Make Ms. Pac-Man?
Which Ticket Option Is The Best Deal?
How Far Apart Are The Freeway Exits?
Do We Have Enough Paint?
How Many Stars Are There In The Universe?
What Rides Can You Go On?
Do You Have Enough Money?
Which Bed Bath \& Beyond Coupon Should You Use?
Is Gas Cheaper With Cash Or Credit Card?
Where's The Nearest Toys R Us?
How Sharp Is The iPhone 5's Retina Display?
When Should She Take Her Medicine?
How Biq Are Sunspots?
What Michael's Coupon Should I Use?
Is It Cheaper To Pay Monthly or Annually?
How Biq Is The 2010 Guatemalan Sinkhole?
How Can You Win Every Prize At Chuck E. Cheese's?
How Many Royal Flushes Will You Get?
How Much Does The Paint On A Space Shuttle Weigh?
How Did Motel 6 Go From $\$ 6$ to $\$ 66$?
How Much Does The Aluminum Foil Prank Cost?
How Many Laps Is A 5k Race?
Which Toilet Uses Less Water?
How Did Someone Get A \$103,000 Speeding Ticket In Finland? Which Pizza Is A Better Deal?
How Biq Is The World's Largest Deliverable Pizza?
How Many Sheets Do You Need To Break Out Of Prison?
Do Hybrid Cars Pay For Themselves?
How Many Hot Dogs Did They Eat?!
How Much Purple Ribbon Will You Need? Are We There Yet?
Which Chinese Food Coupon Should I Use?
How Biq Is The Vehicle That Uses Those Tires?
Where Would The Angry Birds Have Landed?
How Many Movies Can You See In One Day?
Which Carrots Should You Buy?
How Fast Can You Throw A Baseball?

B	c	D	E	F	
Concept / Skill	Standard 1	Standard 2	Standard 3	Standard 4	St
Circles, Pythagorean Theorem, trigonometric ratios	7.G. 4	8.G. 7	G-SRT. 8	G-MG. 1	G
Volume of rectangular prism	5.MD. 3	5.MD. 4	5.MD. 5	5.MD.5b	5.
Exponential Growth	N-RN. 2	A-SSE. 1	A-SSE.3c	A-SSE. 4	A-
Scale and Dividing Decimals	5.NF. 5	5.NF.5a	5.NF.5b	6.NS. 3	
Transformations (Rotations, Reflections, and Translations)	8.G. 1	8.G. 2	8.G. 3	8.G. 4	G
Unit Rates and Ratios	6.RP. 2	$6 . \mathrm{RP} .3$	6.RP.3a	6.RP.3b	
Fractions on a Number Line and Subtracting Fractions	3.NF. 2	3.NF.2b	4.NF. 2	4.NF.3a	4.
Area	3.MD. 5	3.MD. 6	3.MD. 7		
Scientific Notation	8.EE. 3	8.EE. 4			
Inequalities and Measurement	2.MD. 1	6.NS.7a	6.NS.7b		
Money	2.MD. 8				
Percent Discount	7.RP. 3				
Percent Discount	7.RP. 3				
Pythagorean Theorem (Distance in coordinate system)	8.G. 8	G-SRT. 8	G-GPE. 7		
Pythagorean Theorem (Length of a side)	8.G. 7	G-SRT. 8	G-GPE. 7		
Operations with Time Intervals	4.MD. 2				
Converting Units, Proportions, and Scientific Notation	5.MD. 1	7.RP. 2	7.G. 4	8.EE. 4	G
Percent Discount	7.RP. 3	A-CED. 3			
Decimal Operations and/or Systems of Equations	5.NBT. 7	8.EE.8c	A-CED. 3	A-REI. 11	F-
Volume of Cylinder	5.MD. 3	5.MD. 4	5.MD. 5	8.G.9	G
Decomposing Numbers and/or Systems of Equations	2.NBT. 7	3.NBT. 2	3.NBT. 3	8.EE.8c	A-
Probability	7.SP. 5	7.SP. 6	7.SP. 7	S-MD. 5	S-
Surface Area	6.G.4	7.G. 6	8.G. 7	G-MG. 1	G
Percent Increase and Compound Interest	7.RP. 3	A-SSE. 1b	F-BF. 1	F-IF.8b	F-
Surface Area and Unit Rates	6.G.4	6.RP. 2	6.RP. 3	7.G.6	
Perimeter	4.MD. 3				
Systems of Equations/Inequalities	8.EE.8c	A-CED. 3	A-REI. 11	F-BF. 1	
Linear Equations	A-CED. 2	F-BF. 1	F-IF. 4	F-IF. 6	
Area or Circle, Square, and Unit Rates	3.MD. 5	3.MD. 6	3.MD. 7	4.MD. 3	6.
Area of Square	3.MD. 5	3.MD. 6	3.MD. 7	4.NBT. 3	4.1
Integer Operations	5.NBT. 6				
Systems of Equations or Rates	6.RP. 2	6.RP. 3	8.EE.8c	A-CED. 3	F-
Linear and Quadratic Functions	8.F. 3	8.F. 4	F-BF. 1	F-BF. 2	F-
Perimeter \& Circumference	3.MD. 8	4.MD. 3	7.G. 4		
Adding Times	3.MD. 1	4.MD. 2			
Percent Discount	7.RP. 3				
Ratio and Proportions	7.RP. 2				
Create Equation From Quadratic Graph	A-CED. 1	F-BF. 1	F-IF. 4	F-IF.7a	F-L
Adding Times	3.MD. 1	4.MD. 2			
Unit Rates	6.RP. 1	6.RP. 2	6.RP. 3		
Converting Units and Unit Rates	5.MD. 1	6.RP. 2			

Google
 gl

Suloscribe to Lessons

Enter your email address below to receive emails whenever a new lesson is published.

Subscribe

Subscribe to Blog

Enter your email address below to receive emails whenever a new blog post is published.

Subscribe

Submit

The links below are the pages that are being searched by the search engine:

- 101 Questions
- Andrew Stadel
- Dan Meyer
- Dane Ehlert
- Emergent Math's Problem Based Curriculum Maps
- Estimation180
- Geoff Krall
m Feeling Lucky

Problem-Based Lesson Search Engine

This search engine searches all of the sites below to quickly help you find a problem-based lesson (also called 3-Act Task, mathematical modeling, or application problem):

The link belo

Problem-Based Fessons

101qs.com

Andrew Stadel

Dan Meyer

Mathalicious

Problem Based Curriculum Maps

Wentzville
 School Distric†

ROBERT KAPLINSKY
© @robertkaplinsky

Height: 78 inches

Source: Andrew Stadel via www.estimation180.com

Height: 78 inches

Heights

 78 inches

Width:
56 inches

Depth: 18 inches

Sticky note

Recycled Self Stirk Notes Notas autoadhesivas reciclado Notes autoofllantes recyclés

- 18 pads / blocs
- 100 sheets per pad / hojas por bloc / f
- Total 1800 sheets/hojas / feuillets
- 3 in $x 3$ in ($76,2 \mathrm{~mm} \times 76,2 \mathrm{~mm}$)

Dimensions: $5^{7 n} \times 5^{7 n}$

PERFORMANCE TASK

CEREAL BOXES

A cereal company uses cereal boxes that are rectangular prisms The boxes have the dimensions shown.

- 12 inches high
- 8 inches wide
- 2 inches deep

The managers of the company want a new size for their cereal boxes. The new boxes have to be rectangular prisms. You will evaluate one box design the company proposed. Then you will create and propose your own design for the company.

Requirements for the new boxes:

- The new boxes have to use less cardboard than the

Determine the volume of the current cereal box with the dimensions 12 inches high, 8 inches wide, and 2 inches deep.
Find the volume, V, in cubic inches, of each box.
Volume of Original Box: $V=$ \qquad

| + | \rightarrow | \rightarrow | |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 2 | 3 | |
| | | | |
| 4 | 5 | 6 | |
| | | | |
| 7 | 8 | 9 | |
| 0 | . | - | |

2

Label the dimensions of the net for the current cereal box with dimensions 12 inches high, 8 inches wide, and 2 inches deep.

FIVE PRACTICES

Discussion Questions

- "Giving students too much or too little support, or too much direction, can result in a decline in the cognitive demands of the task." (p. 550) Why?
- "By making purposeful choices about the order in which students' work is shared, teachers can maximize the chances that their mathematical goals for the discussion will be achieved." (p. 554) What ways do teachers currently select students? How would you suggest they change their selection process after reading this?
- What challenges might teachers have when trying to "connect" student solutions? (p. 554)

Implementing the Five Practices

1. Anticipate potential student responses to the file cabinet problem.
2. Review the ten student work samples that represent students in your classroom.
3. Figure out which students you would have share their mathematical work.
4. Determine the order you would have those students present their work.
5. Decide on which connections you would emphasize between the students' work and mathematical ideas.

Posters

- At the top of the poster, list the selection strategy used by your group. For example:
- Starting with the most commonly used strategy and moving to one that few students used.
- Starting with a strategy that is more concrete and moving to strategies that are more abstract.
- Incorporating wrong answers to address common misconceptions.
- Attach those students' work to the poster in the order that you would present it.
- Next to the student work list the questions you would ask the student(s) or ideas that you would want to come out as a result of showing that student's work.

struggle: low feedback: lou reward: high
 struggle: low feedback: low reward: high
 struggle: low feedback: lou reward: high

 2

struggle: high feedback: high reward: high

Goals

Engaging problem solving
\triangle Real world problem-based learning
Higher depth of knowledge problems
\square Better implementation
I Improve our ability to ask questions
\triangle Practice preparing to implement a lesson
\square Figure out how to deal with uncomfortable situations

Setting Up The Problem

- What do you do when students ask for data/information I don't have, hadn't considered, or forgot to get?
- What do you do when students ask for information that is probably not important or that they don't actually need?

TICNET BOOT:

 12TICRETS=\$500 25 TICRETS $=\$ 10.00$ 50TCKEETS: 82500 20 TICRETS: 550.00 HANE FUNY

Does a hybrid car pay for itself?

Setting Up The Problem

- What do you do when students ask for data/information I don't have, hadn't considered, or forgot to get?
- What do you do when students ask for information that is probably not important or that they don't actually need?
- What do you do when students don't know what to write for what they know and don't know?
- What do you do when you ask for a guess and they don't know?
- What do you do when they don't ask you for information that they need to solve the problem?

Problem Solving Process

- What do you do when students don't use the strategy you anticipated they would use?

TICNET BOOT:

 12TICRETS=\$500 25 TICRETS $=\$ 10.00$ 50TCKEETS: 82500 20 TICRETS: 550.00 HANE FUNY

Problem Solving Process

- What do you do when students don't use the strategy you anticipated they would use?
- What do you do when a student comes up with a strategy for solving the problem that I do not understand?

Problem Solving Process

- What do you do when students don't use the strategy you anticipated they would use?
- What do you do when a student comes up with a strategy for solving the problem that I do not understand?
- What do you do when the answer we calculate does not match with the actual answer?
- What do you do when students get stuck during the problem solving process and are not sure what to do?

How much shorter are 20 layers of
 staggered
 pipe stacks?

Layers: 0

Problem Solving Process

- What do you do when students don't use the strategy you anticipated they would use?
- What do you do when a student comes up with a strategy for solving the problem that I do not understand?
- What do you do when the answer we calculate does not match with the actual answer?
- What do you do when students get stuck during the problem solving process and are not sure what to do?
- What do you do when you ask students questions and few to no people are ready to respond?

Problem Solving Process

- What do you do when students don't use the strategy you anticipated they would use?
- What do you do when a student comes up with a strategy for solving the problem that I do not understand?
- What do you do when the answer we calculate does not match with the actual answer?
- What do you do when students get stuck during the problem solving process and are not sure what to do?
- What do you do when you ask students questions and few to no people are ready to respond?
- What do you do when the student conclusions are low quality and/or effort?

|||||||||||||||||||||||||||||||||||||||
 $1015773283 \quad 9456613028$

Also exchudes Starbucks
Also excludes Dyson vacuums ant Miele

 Plan Toys ${ }^{\oplus}$, Quinny ${ }^{\oplus}$, Svan ${ }^{\oplus}$, Teutonia ${ }^{\oplus}$, Under Armour ${ }^{\oplus}$, UPPAbaby ${ }^{\oplus}$, baby furniture, diapers, wipes, formula, baby food or portrait studio services.
 of ${ }^{5} 15$ or more.

BED BATH \&
 BEYON D

Beyond any store of its kind:
OFFICES: 650 LIBERTY AVENUE, UNION, NJ 07083

IA conclusion each conclusion Each Item is good for different Items

If the flem is 447 it is better to use the 20% offcoupon because

$$
\begin{aligned}
& 47-5=\$ 42 \text { oft } 47-20 \%=37.60 \\
& 5 \text { vs } 37.60 \\
& 23-5=18 \\
& \begin{array}{c}
\$ 5 \text { off } \\
18 \mathrm{vs} \\
18.40
\end{array} \\
& 23-20 \%=28.40
\end{aligned}
$$

ange Chicken
Shicken Lo Mein
Cashew Nut Chicken
σ Pungent Chicken
Sweet \& Sour Chicken
Curry Chicken
Lemon Chicken
Vegetable Chicken
Mongolian Beef
Broccoli Beef
Pungent Beef
Sweet \& Sour Pork
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25
5.25

Eggplant with Garlic Sauce
5.25
5.25 5.25
σ Broccoli with Garlic Sauce 5.25
\checkmark String Bean with Garlic Sauce 5.25
Vegetable Delight 5.25
Bamboo Fungus Tofu 5.25
Shrimp with Asparagus 6.25
Shrimp with Lobster Sauce 6.25
\checkmark Fish Fillet with Szuchuan Sauce 6.25
\checkmark Fish Fillet with Black Bean Sauce6.25
Crab meat with Asparagus 6.25
Sweet \& Sour Shrimp 6.25

Free to fin chicken lomein
ifs peng al $\$ 25$ and not redeemable
on lung special dinner and
on nd special
party 1 rems
The 10\% capon is Best with high Prices and small orders is best with the free chicken lamerin or chessewonten

You can use the 10% off when you pay 20-24.99 or more the freechicken Lomein when you pay $25-49.99$ or more and the free orange Chitin whengou pay 50 or more

Goals

Engaging problem solving
\triangle Real world problem-based learning
Higher depth of knowledge problems
\triangle Better implementation
Improve our ability to ask questions
\pm Practice preparing to implement a lesson
\pm Figure out how to deal with uncomfortable situations

Construction

- Pick two:

Family

- Pick two:

Problem-Based Learning

- Pick two:

[^0]: Teaching objectives
 Solve mathematical problems or puzzles.
 Explain methods and reasoning.

