San Joaquin Valley Mathematics Project

ROBERT KAPLINSKY @robertkaplinsky Gods Engaging problem solving Higher depth of knowledge problems Real world problem-based learning Practice preparing to implement a lesson

There are 125 sheep and 5 dogs in a flock. How old is the shepherd?

Of the 32 students I interviewed...

- 75% of them gave me numerical responses
- 2 students calculated the answer to be 130(125 + 5)
- 2 students calculated the answer to be 120(125-5)
- 12 students calculated the answer to be 25 (125 \div 5)
- 0 students calculated the answer to be 625 (125 x 5)
- 4 students stated that they guessed their answer (90, 5, 42, and 50)
- 4 students tried to divide 125 by 5 but could not correctly implement the procedure

Takeaways

- Making sense of mathematics
- Intellectual autonomy
 - Intellectual autonomy is about being able to think for yourself and not being dependent on others for the direction and control of one's thinking.

What Does the NHTSA Say?

Key Statistics and Consumer Insights:

• Motor vehicle crashes are the leading cause of death for children age 1 through 12 years old.¹

According to a NHTSA study, 3 out of 4 kids are not as secure in the car as they should be because their car seats are not being used correctly.

be reduced by about hair if the correct child safety seats were always used.

¹ Source: Based on the latest mortality data currently available from the CDC's National Center for Health Statistics.

- "because they have their child in the right seat"
- "because their car seats are not being used correctly"

IF YOUR CHILD IS IN THE RIGHT CAR SEAT.

VISIT SAFERCAR.GOV/THERIGHTSEAT

Child Car

Safety

IF YOUR CHILD IS IN THE RIGHT CAR SEAT.

VISIT SAFERCAR.GOV/THERIGHTSEAT

WHAT IS THE PURPOSE OF A K-12 EDUCATION? College readiness

 ACT National Curriculum Survey
 Survey
 Surveyed 9,937 educators

"Well" or "Very Well" Prepared for College

Source: http://www.act.org/research/policymakers/pdf/NCS-PolicySummary2012.pdf

WHAT IS THE PURPOSE OF A K-12 EDUCATION?

 College readiness
 Career readiness

 Association of American Colleges and Universities survey
 Surveyed over 300

- Surveyed over 300 employers with at least 25 employees and many new hires Critical thinking and analytical reasoning skills

Analyzing and solving complex problems

Communicating effectively orally and in writing

Applying knowledge and skills to real-world setting

Working w/ numbers and understanding statistics

More Less Same

Source: http://www.aacu.org/leap/documents/2013_EmployerSurvey.pdf

CCSS.MATH.CONTENT.4.MD.A.3 mand of Apply the area and perimeter formulas for harder or rectangles in real world and mathematical problems. meet the equal intensity, ti of each grade: conceptua skills and fluency, and application.

Source: http://www.corestandards.org/other-resources/key-shifts-in-mathematics/

What is the perimeter of a rectangle that measures 8 units by 4 units?

List the dimensions of a rectangle with a perimeter of 24 units.

Components of Rigor Procedural Skill and Fluency

Conceptual Understanding

List the of a rectangle with a perimeter of 24 units.

Components of Rigor Procedural Skill and Fluency

Conceptual Understanding

Source: http://www.cde.ca.gov/ta/tg/sr/documents/cstrtqmath3.pdf

What is the perimeter of a rectangle **Mathematics** that measures 8 units by 4 units?

Of all the rectangles with a perimeter of 24 units, which one has the most area?

00:00:00:00 Of all the revealed its with a perimeter of 24 units, which one has the mast area?

Components of Rigor Procedural Skill and Fluency

Conceptual Understanding

Defining the Problem

Students appear to demonstrate "deep, authentic command of mathematical concepts" when given commonly used problems. However with more challenging problems, the same students seem to no longer demonstrate that command.

Addressing the Problem

- First, we must have a clear understanding about why these problems are different from one another.
- Next, we need to practice using these problems so that we understand how students may react to them.
- Last, we need a source that can provide us with a variety of free problems.

DOK Distinguishing Between Depth of Knowledge Levels in Mathematics

Topic	Adding Whole Numbers	Money	Fractions on a Number Line	Area and Perimeter	Subtracting Mixed Numbers
CCSS	• 1.NBT.4	 2.MD.8 	• 3.NF.2	• 3.MD.8	• 5.NF.1
Standard(s)	 2.NBT.5 			• 4.MD.3	
DOK 1	Find the sum.	If you have 2	Which point is located at $\frac{7}{12}$	Find the perimeter	Find the difference.
Example		dimes and 3	below?	of a rectangle that	
	44 + 27 =	pennies, how	LM NO	measures 4 units	_1 _2
		many cents	• • • • • • • • • • • • • • • • • • • •	by 8 units.	$5\frac{-}{2}-4\frac{-}{3}=$
		do you have	$0 \frac{1}{2}$ 1		2 5
DOK 2	Fill in the boxes below	Make 47¢ in	Label the point where $\frac{3}{4}$	List the	Create three different mixed
Example	using the whole	three	belongs on the number line	measurements of	numbers that will make the
	numbers 1 through 9,	different	below. Be as precise as	three different	equation true by using the whole
	no more than one time	ways with	possible.	rectangles that	numbers 1 through 9, no more
	each, so that you make	either		each has a	than one time each,. You may
	a true equation.	quarters,		perimeter of 20	reuse the same whole numbers
		dimes,	\leftarrow	units.	for each of the three mixed
	+ 53 =	nickels, or	$\frac{1}{3}$		numbers.
		pennies.			$5\frac{4}{5} - \boxed{3\frac{1}{20}} = 3\frac{1}{20}$
DOK 3	Make the largest sum	Make 47¢	Create 5 fractions using the	What is the	Make the smallest difference by
Example	by filling in the boxes	using exactly	whole numbers 0 through 9	greatest area you	filling in the boxes below using
Example	below using the whole	6 coins with	no more than one time each.	can make with a	the whole numbers 1 through 9.
	numbers 1 through 9,	either	as numerators and	rectangle that has a	no more than one time each.
	no more than one time	quarters,	denominators and correctly	perimeter of 24	
	each.	dimes,	place them all on a number	units?	•••••
		nickels, or	line.		
	= + =	pennies.			

ROBERT KAPLINSKY

More free DOK 2 & 3 problems available at openmiddle.com | © 2015 Robert Kaplinsky, robertkaplinsky.com

DOK Distinguishing Between Depth of Knowledge Levels in Mathematics

Topic	Surface Area and Probability		Transformations	Factoring	Quadratics in Vertex		
	Volume			Quadratics	Form		
CCSS	• 6.G.4	• 7.SP.5	• 8.G.1	 A-SSE.3a 	• F-IF.7a		
Standard(s)	• 7.G.6	• 7.SP.7	• G-CO.5				
DOK 1	Find the surface	What is the probability of	Rotate the image below 90°	Find the factors:	Find the roots and		
Example	area of a	rolling a sum of 5 using	counterclockw		maximum of the		
	rectangular prism	two 6-sided dice?	ise and reflect	$2x^2 + 7x + 3$	quadratic equation		
	that measures 3		it across a 🛛 💦 🗸		below.		
	units by 4 units by		horizontal				
	5 units.		line.		$y = -3(x-4)^2 - 3$		
DOK 2	List the	What value(s) have a	List three sequences of	Fill in the blank	Create three		
Example	measurements of	1/12 probability of being	transformations that take pre-	with integers so	equations for		
	three different	rolled as the sum of two	image	that the quadratic	quadratics in vertex		
	rectangular prisms	6-sided dice?	ABCD to	expression is	form that have roots		
	that each has a		image	factorable.	at 3 and 5 but have		
	surface area of 20		A'B'C'D'.		different maximum		
	square units.		Pre-Image Image	$x^2 + x + 4$	and/or minimum		
					values.		
DOK 3	What is the	Fill in the blanks to	What is the fewest number of	Fill the blank by	Create a quadratic		
Example	greatest volume	complete this sentence	transformations needed to take	finding the largest	equation with the		
	you can make with	using the whole numbers	pre-image ABCD to image A'B'C'D'?	and smallest	largest maximum		
	a rectangular	1 through 9, no more	В,	integers that will	value using the		
	prism that has a	than one time each.	A	make the quadratic	whole numbers 1		
	surface area of 20			expression	through 9, no more		
	square units?	Rolling a sum of on		factorable.	than one time each.		
		twosided dice is the					
		same probability as rolling	► В V	$2x^2 + 3x + _$	$y = - \left[(x - \left[\right])^2 + \right]$		
		a sum of on two	Pre-Image Image				
		sided dice.					

ROBERT KAPLINSKY

More free DOK 2 & 3 problems available at openmiddle.com | © 2015 Robert Kaplinsky, robertkaplinsky.com

Complicated or Complex?

Gookie Monster Gupcakes

DOK Verb Wheel

Source: Unknown

DOK Flowchart for Questions

Source: Tracy Watanabe - @tracywatanabe

DOK 2								
Conce	ptual	Thinking						
Can you explain how								
compare	classify	categorize						
measure	graph	distinguish						
predict	modify	construct						
interpret	make ob	servations						
DOK 4								
Extend	ded Re	easoning						

- Write a research paper.
- What information can you gather to support your idea
- about ?
- Write a thesis, drawing conclusions from multiple sources.
- Apply information from one text to another to develop an persuasive argument.

design	connect	prove
analyze	critique	synthesize
create	apply con	ncepts

DOK Posters

Source: Penny Lund http://isntitelementary.blogspot.com/

Created by Penny Lund 2013

DOK Level Differences

Level 1: Recall & Reproduction

- Often a trivial application of facts.
- Generally requires little to no cognitive effort beyond remembering the right formula.
- Usually only one answer.

Level 2: Skills & Concepts

- Usually requires more than one step to solve.
- Often multiple answers.

Level 3: Strategic Thinking

- Usually requires critical thinking about the best way to approach a problem.
- May be multiple answers or a single optimal answer.
- Often challenging enough to make your head hurt.

Level 4: Extended Thinking

In mathematics these are generally represented by performance tasks or problem-based lessons.

Adding Decimals

Use the numbers 1 through 9, exactly one time each, to fill in the boxes and make three decimals whose sum is as close to 1 as possible.

Fourth attempt: Points: /2 explanation /2 attempt tematic St notionalaxe S\ 10110110 21 What did you learn from this attempt? How will your strategy change on your next attempt? The perimeter is 24, but the alreg is it and Strategy: use #'s with more than one row. Fifth attempt: Points: ____/2 attempt /2 explanation ris /2 offengt /2 explorention Second attempt What did you learn from this attempt? How will your strategy change on your next attempt? What did you learn from this oftempt? How will your strategy change on your next atten

DOK FAQ

- When will students ever use this?
- What DOK level should I start students off with?
- How do teachers fit these problems into their pacing?
- How do I help prevent students from giving up after trying the problem once or twice?
- Where can I find other DOK 2 and DOK 3 problems or submit ones I've made?

Gods Engaging problem solving Higher depth of knowledge problems Real world problem-based learning Practice preparing to implement a lesson

Open Middle Challenging math problems worth solving

Number & Operations—Fractions (2)

Directions: In a standard game of BINGO, the cards are labeled with numbers 1 through 75. If it was possible, which card would you choose: a card with all of the same number or a standard bingo card? Source: Nanette

Open Middle Challenging math problems worth solving

Home	Kinder 🔻	Grade 1 🝷	Grade 2 🔻	Grade 3 🔻	Grade 4 🔻	Grade 5 🔻	Grade 6 🔻	Grade 7 🔻	Grade 8 🔻	High School 🔻	About	Submit
------	----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	---------------	-------	--------

