Western Regional Education Service Alliance ROBERT KAPLINSKY
 © @robertkaplinsky

Goals

\square Engaging problem solving
\square Real world problem-based learning
OHigher depth of knowledge problems
\square Better implementation
Dimprove our ability to ask questions

DOUBLE-DOUBLE

2004-10-31

YOUR GUEST NUMBER IS
98

$$
\begin{aligned}
& \text { IN-N=OUT BURGER LAS VEGAS EASTERN } \\
& 2004=10-31 \\
& 1651598 \\
& 8: 21 \text { PM }
\end{aligned}
$$

Cashier: SAM

GLEST
 \#: 98

Counter-Eat In

 DblDbl98 Meat Pty KChz
2.65
88.20

Counter-Eat In
TAX 7.50 x
90.85

Amount Due
6.81

CASH TENDEA
Change
$\$ 97.66$
$\$.00$
$2004-10-31$

Cashier: SAM

GLEST
 H: 98

Counter-Eat In

Dblobl

98 Meat Pty XChz

2.65
88.20

Counter-Eat In TAX 7,50x 90.85

Amount Due
6.81
97.66

CASH TENOER Change
$\$ 97.66$ $\$.00$

2008-10-31

$$
8: 21 \text { PM }
$$

		¢
Hamburger w/Onion	243	390
Cheeseburger w/Onion	268	480
Double-Double w/Onion	330	670

Layers	Cost
1	$\$ 1.75$
2	$\$ 2.65$
3	$\$ 3.55$
4	$\$ 4.45$
\cdot	\cdot
\cdot	\cdot
20	$\$ 18.85$
\cdot	\cdot
\cdot	\cdot
100	$\$ 90.85$
\cdot	\cdot
\cdot	$\$ 1.75+(\mathrm{N}-1)^{*} \$ 0.90$
N	

bun + produce + meat + cheese + meat + cheese $=\$ 2.65$
bun + produce + meat + cheese
= \$1.75
meat + cheese $=\$ 0.90$

The Reality

- Students needed guidance to figure out a layer's cost
- Not every class is ready to go straight to 100×100
- Common wrong answers included:
- $\$ 175.00$ ($\$ 1.75 \times 100$ cheeseburgers)
- \$132.50 (\$2.65 x 50 Double-Doubles)
- Students had equations that had more than X patties
- Students were surprised to see three different equations:
- Starting with a Double-Double
- Starting with a cheeseburger
- Starting with produce and bun only

STUDENT WORK

The only difference between a double double and a cheeseburger is one patty and one slice of cheese so you subtract the prices of the two to find the price of only one patty $\&$ cheese. You then use that number $(.90)$ \& subtract it from the cost of one whole cheeseburger to find the price of all the extra stuff. Multiply by 100

What is your conclusion?
A 100×100 at in-n-out cost $\$ 90.85$. To solve that, you start by subtracting the price of a cheeseburger from a double double. The answer (.90) is the price of a patty and cheese slice. You multiply (.90) by one less patty than what you want. $(x-1)$, and you add the price of a cheeseburger (1.75). You end up with the eq. $[y=.90(x-1)+1.75$.].
For the 100×100, you plug in 100 to the (x) and you end Up with $\$ 90.85$.

$$
\left[\begin{array}{l}
y=.90(100-1)+1.75 \\
y=89.10+1.75 \\
y=90.85
\end{array}\right]
$$

What 15 your conclusion?
Figure the price difference from the Double-Double with a cheeseburger. Then find out the prize for the produce and cheese-bees. get total into 90.85 NHA

$$
\begin{gathered}
\text { There are } 125 \\
\text { sheep and } 5 \text { dogs } \\
\text { in a flock. How old } \\
\text { is the shepherd? }
\end{gathered}
$$

Of the 32 students I interviewed...

- 75% of them gave me numerical responses
- 2 students calculated the answer to be $130(125+5)$
- 2 students calculated the answer to be 120 (125-5)
- 12 students calculated the answer to be $25(125 \div 5)$
- 0 students calculated the answer to be 625 (125×5)
- 4 students stated that they guessed their answer (90, 5,42 , and 50)
- 4 students tried to divide 125 by 5 but could not correctly implement the procedure

Takeaways

- Making sense of mathematics
- Intellectual autonomy
- Intellectual autonomy is about being able to think for yourself and not being dependent on others for the direction and control of one's thinking.

What Does the NHTSA Say?

Kev Statistics and Consumer Insights:

- Motor vehicle crashes are the leading cause of death for children age 1 through 12 years old. ${ }^{1}$

According to a NHTSA study, 3 out of 4 kids are not as secure in the car as they should be because their car seats are not being used correctly.

${ }^{1}$ Source: Based on the latest mortality data currently available from the CDC's National Center for Health Statistics.

- "because they have their child in the right seat"
- "because their car seats are not being used correctly"

IF YOUR CHILD IS IN THE RIGHT CAR SEAT.
Ad
council
VISIT SAFERCAR.GOV/THERIGHTSEAT

KNOW FOR SURE

IF YOUR CHILD IS IN THE RIGHT CAR SEAT.

VISIT SAFERCAR.GOV/THERIGHTSEAT

 NHTSA

Sinkhole Dimensions

- National Geographic: "60 feet (18 meters) wide and about 30 stories deep"
- Time Magazine: "runs some 200 ft . deep"
- CNN: "The 20-meter (about 66 feet) diameter sinkhole is about 30 meters (about 100 feet) deep."
- Slate: "A sinkhole, 65 feet across and 100 feet deep"

Hi Brian,

I am using your "How to Fix a Giant Sinkhole" article for a math lesson on volume of a cylinder. I have one question for you. You mentioned.
"It's not clear whether cement is the best option, however. A 6,500-cubic-foot wad of concrete may serve to concentrate water runoff in other areas, leading to more sinkholes."

Can you please tell me where you got 6500 cubic feet from? Did you do 65×100 ? We get something closer to 342,000 cubic feet.

Thanks,
Robert

Apparently you picked the wrong article for a math lesson! I apologize. It appears you are correct. I can't find anything in my notes to save myself-- I think I just screwed up. Dunce cap for me.

PROBLEMBASED - EARNINC FAQ

- How long do problem based lessons take?
- How often do teachers do problem-based learning?
- Do teachers use problem-based lessons to introduce a topic or after you've already taught it?
- How is problem-based learning assessed?
- How much time does it take to create a problem-based lesson?

WHAT DOES IT LOOK LIKE.

- when students have procedural skill but not conceptual understanding or the ability to apply mathematics?
- when students can work with numbers but cannot:
- critically think
- applying knowledge and skills to real-world settings
- analyze and solve complex problems

How far apart are the exits on this freeway: Jct 90 and Jefferson Blvd?

The Four C's

- Communication - Curiosity
- 6.G. 4 - Represent threedimensional figures using nets made up of rectangles and triangles, and use the nets to find the surface area of these figures.
7.G.6 - Solve real-world and mathematical problems involving area, volume and surface area.
- 8.G.9 - Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and mathematical problems.
- G-GMD.3-Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.
: 8.G.3 Describe the effect of dilations, translations, rotations, and reflections on twodimensional figures using coordinates.
- G-C0.6 Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figưre.
- A-CED. 1 - Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.
- F-IF.7a - Graph linear and quadratic functions and show intercepts, maxima, and minima.
6.RP.2 - Understand the concept of a unit rate

The Four C's

- Communication
- Curiosity
- Critical Thinking

Problem Solving Framework

- Inspired by Geoff Krall's resources at emergentmath.com

The Four C's

- Communication
- Curiosity
- Critical Thinking
- Content Knowledge

Goals

\square Engaging problem solving
$\boxed{-}$ Real world problem-based learning
\square Higher depth of knowledge problems
\square Better implementation
Dimprove our ability to ask questions

Questioning Scenarios

- The activity begins with teachers in groups of three taking the roles of teacher, student, or observer.
- The individuals playing the role of teacher and student each receive a slip of paper describing their scenario.
- The individual playing the role of observer waits to record all of the teacher's questions to the student.
- Once the activity begins, the teacher will talk to the student in the context of the scenario they read about on the slips of paper.

What did you get for the area of the circle with a radius of 2 units?

Great. Do you have any questions?

What did you get for the area of the circle with a radius of 2 units?

Great. How did you get your answer?

The radius is 2 so I plugged it into 2 pi r and got 4 pi.

Goals

\square Engaging problem solving
-Real world problem-based learning
\square Higher depth of knowledge problems
\square Better implementation
Improve our ability to ask questions

COMMON CORE STATE STANDARDS INITIATIVE

CCSS.MATH.CONTENT M minmmand of

 Apply the IENT.A.MD.A.3 3 , hat harder or and perimeter formulas for and mathematical meet tequal intensity,
of each grade:
skills and fluency,

Source: http://www.corestandards.org/other-resources/key-shifts-in-mathematics/

What is the perimeter

 of a rectangle that measures 8 units by 4 units?
Components of Rigor

\square Procedural Skill and Fluency

\square Conceptual Understanding

List the dimensions of

a rectangle with a perimeter of 24 units.

Components of Rigor

 [-] Procedural Skill and Fluency[I Conceptual Understanding

Components of Rigor

\square Procedural Skill and Fluency

\square Conceptual Understanding

LIst ur angle with a
of a rectangle with perimeter of 24 units.

Components of Rigor

 [-] Procedural Skill and Fluency[I Conceptual Understanding

71 A basketball court is shaped like a rectangle 20 meters long and 10 meters wide.

What is the perimeter in meters of the court?

A 30 meters
B 50 meters
C 60 meters
D 200 meters

Source: http://www.cde.ca.gov/ta/tg/sr/documents/cstrtqmath3.pdf

What is the perimeter

 of a rectanglethat measures 8 units by 4 units?

Components of Rigor

\square Procedural Skill and Fluency

\square Conceptual Understanding

Components of Rigor

\square Procedural Skill and Fluency

\square Conceptual Understanding

Of all the rectangles with a perimeter of 24 units, which one has the most area?

Of all the rectangles with a perimeter of 24 units, which one
has the most area?

Components of Rigor

 [-] Procedural Skill and Fluency[I Conceptual Understanding

Defining the Problem

- Students appear to demonstrate "deep, authentic command of mathematical concepts" when given commonly used problems.
> However with more challenging problems, the same students seem to no longer demonstrate that command.

Addressing the Problem

- First, we must have a clear understanding about why these problems are different from one another.
- Next, we need to practice using these problems so that we understand how students may react to them.
$>$ Last, we need a source that can provide us with a variety of free problems.

Distinguishing Between Depth of Knowledge Levels in Mathematics

Topic	Adding Whole Numbers	Money	Fractions on a Number Line	Area and Perimeter	Subtracting Mixed Numbers
$\begin{aligned} & \text { CCSS } \\ & \text { Standard(s) } \end{aligned}$	- 1.NBT. 4 - 2.NBT. 5	- 2.MD. 8	- 3.NF. 2	$\begin{array}{ll} \hline- & 3 . M D .8 \\ - & 4 . M D .3 \end{array}$	- 5.NF. 1
DOK 1 Example	Find the sum. $44+27=$	If you have 2 dimes and 3 pennies, how many cents do you have	Which point is located at $\frac{7}{12}$ below?	Find the perimeter of a rectangle that measures 4 units by 8 units.	Find the difference. $5 \frac{1}{2}-4 \frac{2}{3}=$
DOK 2 Example	Fill in the boxes below using the whole numbers 1 through 9, no more than one time each, so that you make a true equation. \square $+53=$ \square	Make 47\$ in three different ways with either quarters, dimes, nickels, or pennies.	Label the point where $\frac{3}{4}$ belongs on the number line below. Be as precise as possible.	List the measurements of three different rectangles that each has a perimeter of 20 units.	Create three different mixed numbers that will make the equation true by using the whole numbers 1 through 9, no more than one time each,. You may reuse the same whole numbers for each of the three mixed numbers. $5 \frac{4}{5}-\square \frac{\square}{\square}=3 \frac{1}{20}$
DOK 3 Example	Make the largest sum by filling in the boxes below using the whole numbers 1 through 9, no more than one time each. \square $+$ \square $=$	Make 47 $\$$ using exactly 6 coins with either quarters, dimes, nickels, or pennies.	Create 5 fractions using the whole numbers 0 through 9, no more than one time each, as numerators and denominators and correctly place them all on a number line.	What is the greatest area you can make with a rectangle that has a perimeter of 24 units?	Make the smallest difference by filling in the boxes below using the whole numbers 1 through 9, no more than one time each.

Distinguishing Between Depth of Knowledge Levels in Mathematics

Topic	Surface Area and Volume	Probability	Transformations	Factoring Quadratics	Quadratics in Vertex Form
$\begin{aligned} & \hline \text { CCSS } \\ & \text { Standard(s) } \end{aligned}$	- 6.G. 4 - 7.G. 6	- 7.SP. 5	- 8.G. 1 - G-CO. 5	- A-SSE.3a	- F-IF.7a
DOK 1 Example	Find the surface area of a rectangular prism that measures 3 units by 4 units by 5 units.	What is the probability of rolling a sum of 5 using two 6 -sided dice?	Rotate the image below 90° counterclockw ise and reflect it across a horizontal line.	Find the factors: $2 x^{2}+7 x+3$	Find the roots and maximum of the quadratic equation below. $y=-3(x-4)^{2}-3$
DOK 2 Example	List the measurements of three different rectangular prisms that each has a surface area of 20 square units.	What value(s) have a $1 / 12$ probability of being rolled as the sum of two 6 -sided dice?	List three sequences of transformations that take preimage ABCD to image $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$.	Fill in the blank with integers so that the quadratic expression is factorable. $x^{2}+\ldots x+4$	Create three equations for quadratics in vertex form that have roots at 3 and 5 but have different maximum and/or minimum values.
DOK 3 Example	What is the greatest volume you can make with a rectangular prism that has a surface area of 20 square units?	Fill in the blanks to complete this sentence using the whole numbers 1 through 9, no more than one time each. Rolling a sum of \qquad on two \qquad -sided dice is the same probability as rolling a sum of \qquad on two \qquad sided dice.	What is the fewest number of transformations needed to take pre-image $A B C D$ to image $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$? Pre-Image Image	Fill the blank by finding the largest and smallest integers that will make the quadratic expression factorable. $2 x^{2}+3 x+$	Create a quadratic equation with the largest maximum value using the whole numbers 1 through 9, no more than one time each. $y=-\square(x-\square)^{2}+\square$

$$
\begin{aligned}
& \text { Complicated } \\
& \text { or Complex? }
\end{aligned}
$$

Gookie Monster Gupcakes

DOK Flowchart for Questions

Source: Tracy Watanabe - @tracywatanabe

Routine Thinking

- Can you recall ?
- Can you identify ?
- How would you describe
- What might you include on a list about
- Can you select $?$
- How can you find the meaning of ?

arrange	calculate memorize	
measure	nane	recosnize
recall	repeat	ideneity
llustrate	match	labed
state	list	state

surateric Reasoning
-How is
related to ?

- What conclusions can be drawn?
- Can you elaborate on ? - How would you test $p^{?}$
- What evidence supports $?$
- What would happen if \qquad - Why is that the best answer?

2ssess compape consuruct appris: Pevise hypothosize cribique innesutate drew conclusions develop \& logical argument

DOK 2
Conceptual Thinking

- Can you explain how \qquad affected?
- How would you apply what you learned to develop ?
- How would you summarize ?
- What do you notice about ?
- How would you estimate
- How could you organize

Extended Reasoning

- Write a research paper. - What information can you gather to support your idea about ?
- Write a thesis, drawing conclusions from multiple sources.
- Apply information from one text to another to develop an persuasive argument.

DOK Level Differences

- Level 1: Recall \& Reproduction
- Often a trivial application of facts.
- Generally requires little to no cognitive effort beyond remembering the right formula.
- Usually only one answer.
- Level 2: Skills \& Concepts
- Usually requires more than one step to solve.
- Often multiple answers.

Level 3: Strategic Thinking

- Usually requires critical thinking about the best way to approach a problem.
- May be multiple answers or a single optimal answer.
- Often challenging enough to make your head hurt.
> Level 4: Extended Thinking
- In mathematics these are generally represented by performance tasks or problem-based lessons.

Adding Decimals

Use the numbers 1

 through 9, exactly one time each, to fill in the boxes and make three decimals whose sum is as close to 1 as possible.

Fifth attempt:

Points: \qquad /2 attempt /2 explanation

Aquatic SI
Point

\qquad

$$
35
$$

What did you learn from this attempt? How will your strategy change on your next attempt?

- When will students ever use this?
- What DOK level should I start students off with?
- How do teachers fit these problems into their pacing?
- How do I help prevent students from giving up after trying the problem once or twice?
- Where can I find other DOK 2 and DOK 3 problems or submit ones l've made?

Goals

Engaging problem solving

- Real world problem-based learning

Higher depth of knowledge problems
\square Better implementation
Improve our ability to ask questions

Open Middle

Source: Dylan Kane

COMMON CORE STATE STANDARDS

- Grade 1 (6)
- Number \& Operations in Base Ten (3)
- Operations \& Algebraic Thinking (3)
- Grade 2 (6)
- Measurement \& Data (2)
- Number \& Operations in Base Ten (4)
- Grade 3 (11)
- Measurement \& Data (6)
- Number \& Operations in Base Ten (3)
- Number \& Operations-Fractions (2)

Problem-Based Lesson Resources

- Problem-based lesson search engine: http://robertkaplinsky.com/prbl-search-engine/
- My lessons: http://www.robertkaplinsky.com/lessons
- Dan Meyer: http://threeacts.mrmeyer.com
- Andrew Stadel: http://tinyurl.com/mrstadel
- Graham Fletcher: http://gfletchy.com/3-act-lessons/
- Geoff Krall: http://tinyurl.com/PrBLmaps
- Dan Meyer's TED talk: http://tinyurl.com/meyer-TED

How Many Sheets Do You Need To Break Out Of Prison?
Goperations with rationalinumiberso ENTE

Robert graduated from University of

Math content expert

California, Los Angeles (UCLA) with a Bachelors of Science in Mathematics. He has taught mathematics to students at the

Lessons elementary, middle, and high school levels. As

All Kinder 1st 2nd 3rd 4th 5th 6th 7th 8th Alg Func Geo Modeling Numb \& Quant Stats \& Prob

How Many Hot Dogs And Buns Should He Buy?

What does - O Calorie LôOK L/KK:

What Does 2000 Calories Look Like?

Robert Kaplinsky's Problem-Based Lessons
File Edit View Insert Format Data Tools Help All changes saved in Drive
두
\$ $\% \quad 123$
Arial
10
$\mathrm{B} \quad I \quad \mathrm{~A}$

- 田
 Σ

Task Name

How Can We Water All Of The Grass?
How Much Money IS That?!
How Much Money Should Dr. Evil Demand?
How Tall Is Mini-Me?
How Did They Make Ms. Pac-Man?
Which Ticket Option Is The Best Deal?
How Far Apart Are The Freeway Exits?
Do We Have Enough Paint?
How Many Stars Are There In The Universe?
What Rides Can You Go On?
Do You Have Enough Money?
Which Bed Bath \& Beyond Coupon Should You Use?
Is Gas Cheaper With Cash Or Credit Card?
Where's The Nearest Toys R Us?
How Sharp Is The iPhone 5's Retina Display?
When Should She Take Her Medicine?
How Biq Are Sunspots?
What Michael's Coupon Should I Use?
Is It Cheaper To Pay Monthly or Annually?
How Biq Is The 2010 Guatemalan Sinkhole?
How Can You Win Every Prize At Chuck E. Cheese's?
How Many Royal Flushes Will You Get?
How Much Does The Paint On A Space Shuttle Weigh?
How Did Motel 6 Go From $\$ 6$ to $\$ 66$?
How Much Does The Aluminum Foil Prank Cost?
How Many Laps Is A 5k Race?
Which Toilet Uses Less Water?
How Did Someone Get A \$103,000 Speeding Ticket In Finland? Which Pizza Is A Better Deal?
How Biq Is The World's Largest Deliverable Pizza?
How Many Sheets Do You Need To Break Out Of Prison?
Do Hybrid Cars Pay For Themselves?
How Many Hot Dogs Did They Eat?!
How Much Purple Ribbon Will You Need? Are We There Yet?
Which Chinese Food Coupon Should I Use?
How Biq Is The Vehicle That Uses Those Tires?
Where Would The Angry Birds Have Landed?
How Many Movies Can You See In One Day?
Which Carrots Should You Buy?
How Fast Can You Throw A Baseball?

B	c	D	E	F	
Concept / Skill	Standard 1	Standard 2	Standard 3	Standard 4	St
Circles, Pythagorean Theorem, trigonometric ratios	7.G. 4	8.G. 7	G-SRT. 8	G-MG. 1	G
Volume of rectangular prism	5.MD. 3	5.MD. 4	5.MD. 5	5.MD.5b	5.
Exponential Growth	N-RN. 2	A-SSE. 1	A-SSE.3c	A-SSE. 4	A-
Scale and Dividing Decimals	5.NF. 5	5.NF.5a	5.NF.5b	6.NS. 3	
Transformations (Rotations, Reflections, and Translations)	8.G. 1	8.G. 2	8.G. 3	8.G. 4	G
Unit Rates and Ratios	6.RP. 2	$6 . \mathrm{RP} .3$	6.RP.3a	6.RP.3b	
Fractions on a Number Line and Subtracting Fractions	3.NF. 2	3.NF.2b	4.NF. 2	4.NF.3a	4.
Area	3.MD. 5	3.MD. 6	3.MD. 7		
Scientific Notation	8.EE. 3	8.EE. 4			
Inequalities and Measurement	2.MD. 1	6.NS.7a	6.NS.7b		
Money	2.MD. 8				
Percent Discount	7.RP. 3				
Percent Discount	7.RP. 3				
Pythagorean Theorem (Distance in coordinate system)	8.G. 8	G-SRT. 8	G-GPE. 7		
Pythagorean Theorem (Length of a side)	8.G. 7	G-SRT. 8	G-GPE. 7		
Operations with Time Intervals	4.MD. 2				
Converting Units, Proportions, and Scientific Notation	5.MD. 1	7.RP. 2	7.G. 4	8.EE. 4	G
Percent Discount	7.RP. 3	A-CED. 3			
Decimal Operations and/or Systems of Equations	5.NBT. 7	8.EE.8c	A-CED. 3	A-REI. 11	F-
Volume of Cylinder	5.MD. 3	5.MD. 4	5.MD. 5	8.G.9	G
Decomposing Numbers and/or Systems of Equations	2.NBT. 7	3.NBT. 2	3.NBT. 3	8.EE.8c	A-
Probability	7.SP. 5	7.SP. 6	7.SP. 7	S-MD. 5	S-
Surface Area	6.G.4	7.G. 6	8.G. 7	G-MG. 1	G
Percent Increase and Compound Interest	7.RP. 3	A-SSE. 1b	F-BF. 1	F-IF.8b	F-
Surface Area and Unit Rates	6.G.4	6.RP. 2	6.RP. 3	7.G.6	
Perimeter	4.MD. 3				
Systems of Equations/Inequalities	8.EE.8c	A-CED. 3	A-REI. 11	F-BF. 1	
Linear Equations	A-CED. 2	F-BF. 1	F-IF. 4	F-IF. 6	
Area or Circle, Square, and Unit Rates	3.MD. 5	3.MD. 6	3.MD. 7	4.MD. 3	6.
Area of Square	3.MD. 5	3.MD. 6	3.MD. 7	4.NBT. 3	4.1
Integer Operations	5.NBT. 6				
Systems of Equations or Rates	6.RP. 2	6.RP. 3	8.EE.8c	A-CED. 3	F-
Linear and Quadratic Functions	8.F. 3	8.F. 4	F-BF. 1	F-BF. 2	F-
Perimeter \& Circumference	3.MD. 8	4.MD. 3	7.G. 4		
Adding Times	3.MD. 1	4.MD. 2			
Percent Discount	7.RP. 3				
Ratio and Proportions	7.RP. 2				
Create Equation From Quadratic Graph	A-CED. 1	F-BF. 1	F-IF. 4	F-IF.7a	F-L
Adding Times	3.MD. 1	4.MD. 2			
Unit Rates	6.RP. 1	6.RP. 2	6.RP. 3		
Converting Units and Unit Rates	5.MD. 1	6.RP. 2			

Google
 gl

Suloscribe to Lessons

Enter your email address below to receive emails whenever a new lesson is published.

Subscribe

Subscribe to Blog

Enter your email address below to receive emails whenever a new blog post is published.

Subscribe

Submit

The links below are the pages that are being searched by the search engine:

- 101 Questions
- Andrew Stadel
- Dan Meyer
- Dane Ehlert
- Emergent Math's Problem Based Curriculum Maps
- Estimation180
- Geoff Krall
m Feeling Lucky

Problem-Based Lesson Search Engine

This search engine searches all of the sites below to quickly help you find a problem-based lesson (also called 3-Act Task, mathematical modeling, or application problem):

The link belo

Problem-Based Fessons

101qs.com

Andrew Stadel

Dan Meyer

Mathalicious

Problem Based Curriculum Maps

