Digging into Depth of Knowledge
 ROBERT KAPLINSKY
 ; @robertkaplinsky

COMMON CORE STATE STANDARDS INITIATIVE

CCSS.MATH.CONTENT demand of Apply the IENT.4.MD.A 3 ma ta harder or problems. meetth
equal intensity, equal each grade: con rectangles in real world and mathematical skills and fluency,

Source: http://www.corestandards.org/other-resources/key-shifts-in-mathematics/

What is the perimeter

 of a rectangle that measures 8 units by 4 units?
Components of Rigor

\square Procedural Skill and Fluency

\square Conceptual Understanding

List the dimensions of

a rectangle with a perimeter of 24 units.

Components of Rigor

 [I Procedural Skill and Fluency[I Conceptual Understanding

Components of Rigor

\square Procedural Skill and Fluency

\square Conceptual Understanding

LIst ur angle with a
of a rectangle with perimeter of 24 units.

Components of Rigor

 [I Procedural Skill and Fluency[I Conceptual Understanding

71 A basketball court is shaped like a rectangle 20 meters long and 10 meters wide.

What is the perimeter in meters of the court?

A 30 meters
B 50 meters
C 60 meters
D 200 meters

Source: http://www.cde.ca.gov/ta/tg/sr/documents/cstrtqmath3.pdf

What is the perimeter

 of a rectanglethat measures 8 units by 4 units?

Components of Rigor

\square Procedural Skill and Fluency

\square Conceptual Understanding

Components of Rigor

\square Procedural Skill and Fluency

\square Conceptual Understanding

Of all the rectangles with a perimeter of 24 units, which one has the most area?

Of all the rectangles with a perimeter of 24 units, which one
has the most area?

Components of Rigor

 [I Procedural Skill and Fluency[I Conceptual Understanding

Defining the Problem

- Students appear to demonstrate "deep, authentic command of mathematical concepts" when given commonly used problems.
- However with more challenging problems, the same students seem to no longer demonstrate that command.

Addressing the Problem

$>$ First, we must have a clear understanding about why these problems are different from one another.

- Next, we need to practice using these problems so that we understand how students may react to them.
$>$ Last, we need a source that can provide us with a variety of free problems.

Distinguishing Between Depth of Knowledge Levels in Mathematics

Topic	Adding Whole Numbers	Money	Fractions on a Number Line	Area and Perimeter	Subtracting Mixed Numbers
$\begin{aligned} & \text { CCSS } \\ & \text { Standard(s) } \end{aligned}$	- 1.NBT. 4 - 2.NBT. 5	- 2.MD. 8	- 3.NF. 2	$\begin{array}{ll} \hline- & 3 . M D .8 \\ - & 4 . M D .3 \end{array}$	- 5.NF. 1
DOK 1 Example	Find the sum. $44+27=$	If you have 2 dimes and 3 pennies, how many cents do you have	Which point is located at $\frac{7}{12}$ below?	Find the perimeter of a rectangle that measures 4 units by 8 units.	Find the difference. $5 \frac{1}{2}-4 \frac{2}{3}=$
DOK 2 Example	Fill in the boxes below using the whole numbers 1 through 9, no more than one time each, so that you make a true equation. \square $+53=$ \square	Make 47\$ in three different ways with either quarters, dimes, nickels, or pennies.	Label the point where $\frac{3}{4}$ belongs on the number line below. Be as precise as possible.	List the measurements of three different rectangles that each has a perimeter of 20 units.	Create three different mixed numbers that will make the equation true by using the whole numbers 1 through 9, no more than one time each,. You may reuse the same whole numbers for each of the three mixed numbers. $5 \frac{4}{5}-\square \frac{\square}{\square}=3 \frac{1}{20}$
DOK 3 Example	Make the largest sum by filling in the boxes below using the whole numbers 1 through 9, no more than one time each. \square $+$ \square $=$	Make 47 $\$$ using exactly 6 coins with either quarters, dimes, nickels, or pennies.	Create 5 fractions using the whole numbers 0 through 9, no more than one time each, as numerators and denominators and correctly place them all on a number line.	What is the greatest area you can make with a rectangle that has a perimeter of 24 units?	Make the smallest difference by filling in the boxes below using the whole numbers 1 through 9, no more than one time each.

Distinguishing Between Depth of Knowledge Levels in Mathematics

Topic	Surface Area and Volume	Probability	Transformations	Factoring Quadratics	Quadratics in Vertex Form
$\begin{aligned} & \hline \text { CCSS } \\ & \text { Standard(s) } \end{aligned}$	- 6.G. 4 - 7.G. 6	- 7.SP. 5	- 8.G. 1 - G-CO. 5	- A-SSE.3a	- F-IF.7a
DOK 1 Example	Find the surface area of a rectangular prism that measures 3 units by 4 units by 5 units.	What is the probability of rolling a sum of 5 using two 6 -sided dice?	Rotate the image below 90° counterclockw ise and reflect it across a horizontal line.	Find the factors: $2 x^{2}+7 x+3$	Find the roots and maximum of the quadratic equation below. $y=-3(x-4)^{2}-3$
DOK 2 Example	List the measurements of three different rectangular prisms that each has a surface area of 20 square units.	What value(s) have a $1 / 12$ probability of being rolled as the sum of two 6 -sided dice?	List three sequences of transformations that take preimage ABCD to image $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$.	Fill in the blank with integers so that the quadratic expression is factorable. $x^{2}+\ldots x+4$	Create three equations for quadratics in vertex form that have roots at 3 and 5 but have different maximum and/or minimum values.
DOK 3 Example	What is the greatest volume you can make with a rectangular prism that has a surface area of 20 square units?	Fill in the blanks to complete this sentence using the whole numbers 1 through 9, no more than one time each. Rolling a sum of \qquad on two \qquad -sided dice is the same probability as rolling a sum of \qquad on two \qquad sided dice.	What is the fewest number of transformations needed to take pre-image $A B C D$ to image $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$? Pre-Image Image	Fill the blank by finding the largest and smallest integers that will make the quadratic expression factorable. $2 x^{2}+3 x+$	Create a quadratic equation with the largest maximum value using the whole numbers 1 through 9, no more than one time each. $y=-\square(x-\square)^{2}+\square$

$$
\begin{aligned}
& \text { Complicated } \\
& \text { or Complex? }
\end{aligned}
$$

Gookie Monster Gupatiks

DOK Flowchart for Questions

Source: Tracy Watanabe - @tracywatanabe

DOK 1

Routine Thinking

- Can you recall \square
- Can you identify \qquad
- How would you describe
- What might you include on a list about
- Can you select $?$
- How can you find the meaning of ?

ญP1్నర	Calculat	memorize
measure	neme	recosnize
recall	repeat	idenatily
Tlustrate	match	Pobed
state	list	state

Sயొatesic గొeasoning

- How is
related to ?
-What conclusions can be drawn?
- Can you elaborate on ? - How would you test $?$ - What evidence supports ?
- What would happen if \qquad
-Why is that the best answer?
assess compape consuruct
appriss pevise hyporthesize
critque invesutate
drew conclusions develop \& logical argument

DOK 2
Conceptual Thinking

- Can you explain how \qquad affected?
- How would you apply what you learned to develop ?
- How would you summarize ?
- What do you notice about ?
- How would you estimate
- How could you organize

Extended Reasoning

- Write a research paper. - What information can you gather to support your idea about ?
- Write a thesis, drawing conclusions from multiple sources.
- Apply information from one text to another to develop an persuasive argument.

Source: Penny Lund
http://isntitelementary.blogspot.com/

DOK Level Differences

- Level 1: Recall \& Reproduction
- Often a trivial application of facts.
- Generally requires little to no cognitive effort beyond remembering the right formula.
- Usually only one answer.
- Level 2: Skills \& Concepts
- Usually requires more than one step to solve.
- Often multiple answers.

Level 3: Strategic Thinking

- Usually requires critical thinking about the best way to approach a problem.
- May be multiple answers or a single optimal answer.
> Often challenging enough to make your head hurt.
> Level 4: Exłended Thinking
- In mathematics these are generally represented by performance tasks or problem-based lessons.

Probability

What is the probability of

 rolling a sum of 5 using two 6sided dice?
Probability

What value(s) have a $\frac{1}{12}$ probability of being rolled as the sum of two 6 -sided dice?

Author: Daniel Luevanos

Probability

Fill in the blanks to complete this sentence using the whole numbers 1 through 9, no more than one time each.

Rolling a sum of ___ on two ___sided dice is the same probability as rolling a

 sum of ___ on two ____sided dice.Authors: Audrey Mendivil, Daniel Luevanos, and Robert Kaplinsky

JUST BRAIN

 TEASERS?
Sail away

Two men and two women want to sail to an island.

How can all four of them get to the island?

[^0]46

Make the largest sum by filling in the boxes below using the whole numbers 1 through 9, no more than one time each.

\square
@rob tease more

1:27 P
@robertkaplinsky @openmiddle I think the purpose is the difference. OMP are designed to learn important math. BT are designed to trick! 5:47 PM - 4 May 2015

47

Mike Flynn
@MikeFlynn55
@fawnpnguyen @robertkaplinsky @openmiddle I agree OMP allow for multiple approaches and/or solutions where BT seemed closed most of the time

1:44 PM - 4 May 2015

Adding Decimals

Use the numbers 1

 through 9, exactly one time each, to fill in the boxes and make three decimals whose sum is as close to 1 as possible.

Fifth attempt:

Points: \qquad /2 attempt /2 explanation

Aquatic SI
Point

\qquad

$$
35
$$

What did you learn from this attempt? How will your strategy change on your next attempt?

- When will students ever use this?
- What DOK level should I start students off with?
- How do teachers fit these problems into their pacing?
- How do I help prevent students from giving up after trying the problem once or twice?
- Where can I find other DOK 2 and DOK 3 problems or submit ones l've made?

Open Middle

Source: Dylan Kane

COMMON CORE STATE STANDARDS

- Grade 1 (6)
- Number \& Operations in Base Ten (3)
- Operations \& Algebraic Thinking (3)
- Grade 2 (6)
- Measurement \& Data (2)
- Number \& Operations in Base Ten (4)
- Grade 3 (11)
- Measurement \& Data (6)
- Number \& Operations in Base Ten (3)
- Number \& Operations-Fractions (2)

Total Open Middle Problems

Open Middle Author Percentages

80\%
70\% --4000000
60\%
50\%
40\% 30\% \qquad
20\% 10\%
0\%

- oOpen Middle • o\#MTBoS

Open Middle Author Percentages

Problems by DOK Level

Note: Data as of February 2016

Problems by Grade Band

$\square K-5$
$\square 6-8$
$\square 9-12$

Note: Data as of February 2016

COMMON CORE STATE STANDARDS INITIATIVE

Rigor refers to dents, not making math harder or mathematical concept arlier grades. To hed to pursue, with introducing topics educators will need the major work meet the standards ea aspects of rigor in procedural of each grade: conceptual uncarion.
skills and

Source: http://www.corestandards.org/other-resources/key-shifts-in-mathematics/

Call to Action

Commit to one of these choices:

DImplement a single DOK 2 or DOK 3 problem from openmiddle.com in your classes within the week.
-Put a DOK 2 question from openmiddle.com on your next assessment.

[^0]: Teaching objectives
 Solve mathematical problems or puzzles.
 Explain methods and reasoning.

