Breaking the Status Quo: Taking a fresh look at the choices we make

ROBERT KAPLINSKY

@robertkaplinsky

Three Comparisons

Change vs. Transition

Complex vs. Complicated

Power vs. Influence

Status Quo

Change is transition

New Reality

Change then transition

- Change
- Transition
 - Ending
 - Neutral Zone
 - New Beginning

What does this mean for math education?

- Change
- Transition
 - Ending

- People may not stop doing anything. They may try to do all the old things <u>and</u> the new things. Soon they burn out with the overload.
- People make their own decisions about what to discard and what to keep, and the result is inconsistency and chaos.
- People toss out everything that was done in the past.

- Change
- Transition
 - Ending
 - Neutral Zone
 - New Beginning

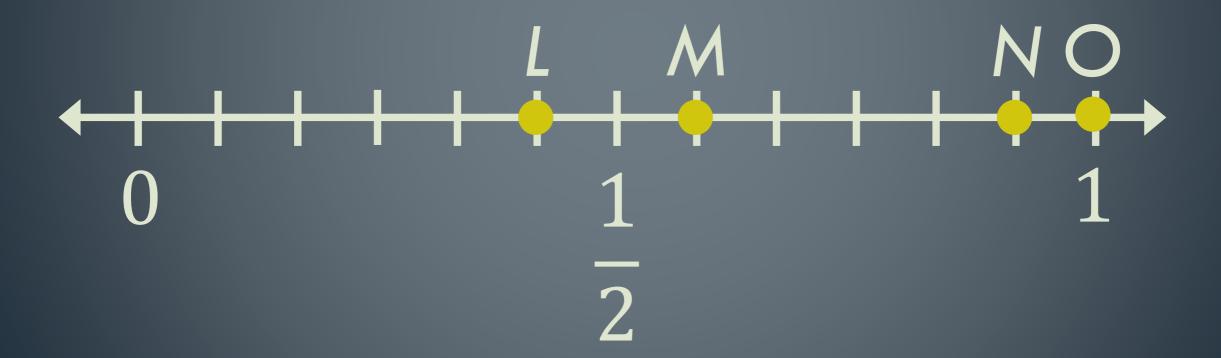
Status Quo

Change is transition

New Reality

Change then transition

Status Quo


Math education is <u>complicated</u>

New Reality

Math education is <u>complex</u>

Fractions on a Number Line

Which point is located at $\frac{7}{12}$ below?

Source: CA Released Test Questions – Grade 4 Math

Fractions on a Number Line

Label the point where $\frac{3}{4}$ belongs on the number line below. Be as precise as possible.

Source: Open Middle - openmiddle.com

Fractions on a Number Line

Create 5 fractions using the whole numbers 0 through 9, exactly than one time each, as numerators and denominators and correctly place them all on a number line.

Source: Open Middle - openmiddle.com

3 JAS JIAT 3A JAUGIVIONI ROP 03 J38AJ TON TINU 21HT

Rains butter

NET WT. 4 OZ. (1139)

MEI WI, 4 OZ. III30

1/3 cup butter

1/3 cup white sugar

3 tablespoons and 1-3/4 teaspoons packed brown sugar

1/3 cup peanut butter

1/4 teaspoon vanilla extract

How can we tell where to cut the butter so you have 1/3 of a cup?

Ingredients: Pasteurized Cream, Salt.

DISTRIBUTED BY: RALPHS GROCERY CO. LOS ANGELES, CALIF. 90054

1 Tbsp. 2 Tbsp. 3 Tbsp. 4 Tbsp. 5 Tbsp. 6 Tbsp. 7 Tbsp. 8 Tbsp. 1/4 cup

FIRST QUALITY

How can we tell where to cut the butter so you have 1/2 of a cup?

Ingredients: Pasteurized Cream, Salt.

DISTRIBUTED BY: RALPHS GROCERY CO. LOS ANGELES, CALIF. 90054

1 Tbsp. 2 Tbsp. 3 Tbsp. 4 Tbsp. 5 Tbsp. 6 Tbsp. 7 Tbsp. 8 Tbsp. 1/2 cup

FIRST QUALITY

Ingredients: Pasteurized Cream, Salt.

DISTRIBUTED BY: RALPHS GROCERY CO. LOS ANGELES, CALIF. 90054

1 Tbsp.	2 Tbsp.	3 Tbsp.	4 Tbsp.	5 Tbsp.	6 Tbsp.	7 Tbsp.	8 Tbsp.
			1/4 cup	1/3 cup	1/3 cup		1/2 cup

FIRST QUALITY

Ingredients: Pasteurized Cream, Salt.

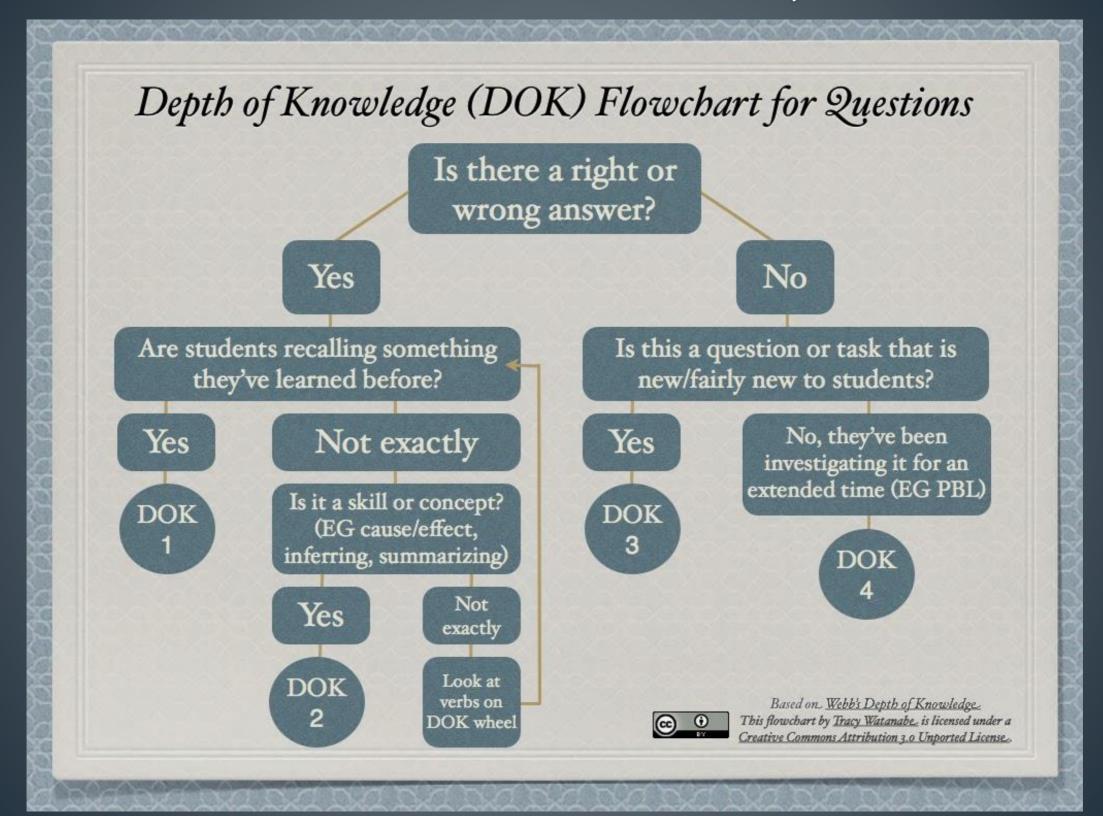
DISTRIBUTED BY: RALPHS GROCERY CO. LOS ANGELES, CALIF. 90054

17	Tbsp.	2 Tbsp.	3 Tbsp.	4 Tbsp.	5 Tbsp.	6 Tbsp.	7 Tbsp.	8 Tbsp.
			*	1/4 cup	1/3 cup			1/2 cup

FIRST QUALITY

Complicated or Complex?

- Using an electric mixer, whip the butter until it is pale. This will take at least 5 minutes on high.
- 2. Gradually add in the icing mixture and vanilla until well combined.
- 3. With the mixer running, add in food colouring until you get to the Cookie Monster colour. This may be a lot if you are using liquid food colouring or a little if using gel food colouring.
- 4. Add in the milk and mix until the frosting puffs up.
- 5. Fill a piping bag with a fluted nozzle and pipe on icing.
- 6. With the writing icing, place black spots on the marshmallows for pupils.
- 7. Place on each cupcake.
- 8. Cut cookies in half and place in 'mouth'.


What does a complicated approach to Depth of Knowledge look like S

DOK Verb Wheel

Source: Unknown

DOK Flowchart for Questions

Source: Tracy Watanabe - @tracywatanabe

DOK 1

Routine Thinking

- Can you recall
- Can you identify _____
- -How would you describe ____
- What might you include on a list about
- Can you select ?
- -How can you find the meaning

arrange calculate memorize measure name recognize recall repeat identify flustrate match label state

DOK 2

Conceptual Thinking

- -Can you explain how affected ?
- -How would you apply what you learned to develop ?
- -How would you summarize
- What do you notice about
- -How would you estimate
- -How could you organize

compare classify categorize measure graph distinguish predict modify construct organize infer summarize interpret make observations

DOK 3

Strategic Reasoning

- · How is related to ?
- What conclusions can be drawn?
- Can you elaborate on
- -How would you test ?
- What evidence supports _____
- What would happen if ?

· Why is that the best answer?

assess compare construct
apprise revise hypothesize
critique investigate
draw conclusions

develop a logical argument

Extended Reasoning

- Write a research paper.
- What information can you gather to support your idea about ?
- Write a thesis, drawing conclusions from multiple sources.
- Apply information from one text to another to develop an persuasive argument.

design connect prove analyze critique synthesize create apply concepts

Created by Penny Lund 2013

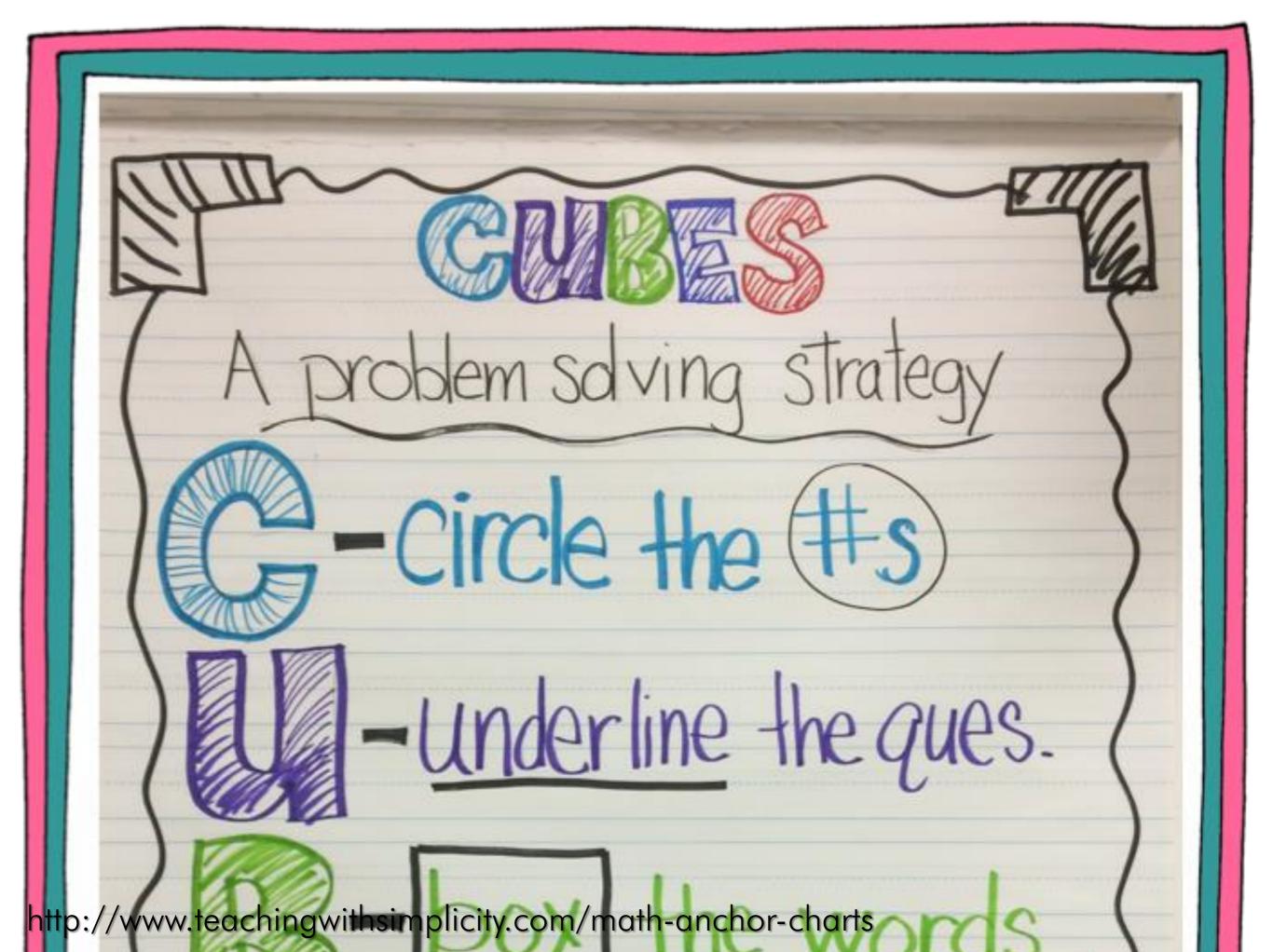
DOK Posters

Source: Penny Lund http://isntitelementary.blogspot.com/

DOK Distinguishing Between Depth of Knowledge Levels in Mathematics

Topic	Adding Whole Numbers	Money	Fractions on a Number Line	Area and Perimeter	Subtracting Mixed Numbers
CCSS	• 1.NBT.4	• 2.MD.8	• 3.NF.2	• 3.MD.8	• 5.NF.1
Standard(s)	• 2.NBT.5			• 4.MD.3	
DOK 1	Find the sum.	If you have 2	Which point is located at $\frac{7}{12}$	Find the perimeter	Find the difference.
Example	44 + 27 =	dimes and 3 pennies, how many cents do you have	below? L M N O 12 0 12 12	of a rectangle that measures 4 units by 8 units.	$5\frac{1}{2} - 4\frac{2}{3} =$
DOK 2 Example	Fill in the boxes below using the whole numbers 1 through 9, no more than one time each, so that you make a true equation. + 53 =	Make 47¢ in three different ways with either quarters, dimes, nickels, or pennies.	Label the point where $\frac{3}{4}$ belongs on the number line below. Be as precise as possible.	List the measurements of three different rectangles that each has a perimeter of 20 units.	Create three different mixed numbers that will make the equation true by using the whole numbers 1 through 9, no more than one time each. You may reuse the same whole numbers for each of the three mixed numbers. $5\frac{4}{5} - \boxed{} = 3\frac{1}{20}$
DOK 3 Example	Make the largest sum by filling in the boxes below using the whole numbers 1 through 9, no more than one time each.	Make 47¢ using exactly 6 coins with either quarters, dimes, nickels, or pennies.	Create 5 fractions using the whole numbers 0 through 9, exactly one time each as numerators and denominators, and place them all on a number line.	What is the greatest area you can make with a rectangle that has a perimeter of 24 units?	Make the smallest difference by filling in the boxes below using the whole numbers 1 through 9, no more than one time each.

ROBERT KAPLINSKY


More free DOK 2 & 3 problems available at openmiddle.com | © 2015 Robert Kaplinsky, robertkaplinsky.com

DOK Distinguishing Between Depth of Knowledge Levels in Mathematics

Quadratics in Vertex Form • F-IF.7a Find the roots and maximum of the
F-IF.7a Find the roots and
Find the roots and
maximum of the
anne destite a montia a
quadratic equation
below.
$y = -3(x-4)^2 - 3$
Create three
equations for
quadratics in vertex
form that have roots
at 3 and 5 but have
different maximum
and/or minimum
values.
Create a quadratic
equation with the
largest maximum
value using the
whole numbers 1
through 9, no more
than one time each.
$y = -[(x-[)^2 + []$
C

What does a complicated approach to problem solving look likes

There are 125 sheep and 5 dogs in a flock. How old is the shepherd?

What problem are you trying to figure out?	What guesses do you have?					
What do you already know from the problem?	What do you need to know to solve the problem?					
What is your conclusion? How did you reach that conclusion?						

Landing Page ?			Sessions ? ↓	Pages / Session	Avg. Session Duration
			79,408 % of Total: 100.00% (79,408)	3.98 Avg for View: 3.98 (0.00%)	00:02:00 Avg for View: 00:02:00 (0.00%)
1.	How Much Is One Third Of A Cup Of Butter?	P	13,699 (17.25%)	2.08	0:00:15
2.	Lessons	æ	12,558 (15.81%)	7.29	
3.	Home Page	Ø	7,198 (9.06%)	8.10	00:04:44
4.	How Much Does A 100×100 In-N-Out Cheeseburger Cost?	æ	4,321 (5.44%)	2.87	00:01:49
5.	How Did They Make Ms. Pac-Man?	Ø	2,112 (2.66%)	2.71	00:01:55
6.	How Do You Write A Check To Pay For Something?	Ø	1,775 (2.24%)	2.54	00:00:45
7.	How Many Hot Dogs And Buns Should He Buy?	P	1,750 (2.20%)	3.23	00:01:47
8.	Problem-Based Lesson Search Engine	Ð	1,712 (2.16%)	4.59	00:03:30
9.	How Much Money IS That?!	Ø	1,439 (1.81%)	2.47	00:00:39
10.	Which Bed Bath & Beyond Coupon Should You Use?	æ	1,396 (1.76%)	2.41	00:00:39

How much is one third of a cup of butter?

All News Shopping Maps Images More ▼ Search tools

Status Quo

Math education is <u>complicated</u>

New Reality

Math education is <u>complex</u>

Status Quo

Power

New Reality

Power

Power versus Influence

Power

- Positional
- Wielded
- Pushes
- Resented
- Expires

- Personal
- Granted
- Persuades
- Respected
- Endures

Give power Gain influence

Who Can Empower Others?

- Teachers with their students
- Students with each other and/or the community
- Department chairs
- Principals and administrators
- #MTBoS
- Professional teacher organizations

Status Quo

Power

New Reality

Robert Kaplinsky

- robert@robertkaplinsky.com
- robertkaplinsky.com/ocmc16 @robertkaplinsky