Rich Real World Problems

 ROBERT KAPLINSKY

 ROBERT KAPLINSKY
 \% @robertkaplinsky

Sinkhole Dimensions

- National Geographic: "60 feet (18 meters) wide and about 30 stories deep"
- Time Magazine: "runs some 200 ft . deep"
- CNN: "The 20-meter (about 66 feet) diameter sinkhole is about 30 meters (about 100 feet) deep."
- Slate: "A sinkhole, 65 feet across and 100 feet deep"

How To Fix a Giant Sinkhole

It's not clear whether cement is the best option, however. A 6,500-cubic-foot wad of concrete may serve to concentrate water runoff in other areas, leading to more sinkholes. Many engineers prefer the graded-filter technique, in which the hole is filled with a layer of boulders, then a layer of smaller rocks, and, finally, a layer of gravel. This fills the hole, more or less, while permitting water to drain through the area.

2010 Guatemalan Sinkhole

Kaplinsky, Robert
To:

Hi Brian,

I am using your "How to Fix a Giant Sinkhole" article for a math lesson on volume of a cylinder. I have one question for you. You mentioned.
"It's not clear whether cement is the best option, however. A 6,500-cubic-foot wad of concrete may serve to concentrate water runoff in other areas, leading to more sinkholes."

Can you please tell me where you got 6500 cubic feet from? Did you do 65×100 ? We get something closer to 342,000 cubic feet.

Thanks,
Robert

Reply Reply All Forward v 酔 目

Re： 2010 Guatemalan Sinkhole

Brian Palmer

To：
Kaplinsky, Robert

Apparently you picked the wrong article for a math lesson！I apologize．It appears you are correct．I can＇t find anything in my notes to save myself－－I think I just screwed up．Dunce cap for me．

 4 what net now hat -

OLD
(Boring)

NEW

Diamond

Shreddies

Cereal

$$
\begin{gathered}
\text { NEW } \\
\text { (Exciting!) }
\end{gathered}
$$

"Kraft Foods saw an immediate 18\% increase in baseline sales of Shreddies within the first month alone, and for months thereafter."

The Reality

- Some students felt anxious about not having the exact dimensions.
- Depending on how much extra information I gave them, students modeled the problem differently:
- Cylinder
- Semi-sphere
- Truncated cone
- Students struggled with precision when dealing with multiple units:
- feet vs. square feet vs. cubic feet
- feet vs. meters vs. stories
- Many students doubted themselves when they saw that the "answer" was 6,500 cubic feet.

STUDENT WORK

How Do We Assess Student Work?

- Option \#1 - Don't assess the problem
- Option \#2 - Use general purpose rubric
- Option \#3 - Use a problem-specific rubric

Option \#2 - General Purpose Rubric

- For full credit (2 points):
- Student reaches the correct conclusion. AND
- Student provides sufficient reasoning to support this conclusion.
- For partial credit (1 point):
- Student reaches the correct conclusion but does not provide sufficient reasoning to support this conclusion. OR
- Student does not reach the correct conclusion but provides reasoning to support this conclusion that contains a minor conceptual or computation error.

In order to solve this problem, you need the width and the height of the hole. Once you have it you plus them into the equation $r^{2} \pi \cdot h$ which is to find the volume. Once you find the volume you will know how much cement you will need to order so that you could fill that cement hole, which in this case would be 341,119 feet of cement.

This particular sinkhole in Guatemala City, was about 20 meters (66 feet) in diameter and about 30 meters (100 feet) deep. We are trying to find the volume of the hole to figure cut how much material is needed to fill it. I used the cylinder volume formula $\left(v=\pi r^{2} h\right)$. When you plug in the radius and the height, you get $v=\pi(33)^{2}(100)$. I did not use bb as my radius, because that is my diameter. Radius is half of the diameter. After you solve, you are left with $342,119,44 \mathrm{ft}^{3}$. You don't use ft^{2} or ft because the hole 133 dimensional. From here on, you just use the material cost and amount to find the price of the job.

In order to fill the smkhite with cement. They will need $342,119 \mathrm{ft} 3$ of cement. How is this possible?
Diameter $=66$ feet, but we are looking for radius.
$66 / 2=33$ Now we got our radius which is 33.
$r=33$
So we have a radius and height.
Depth $=100$ feet. we con use the volume of a cylinder formula. which is $v=\pi r^{2} h$

$$
\begin{aligned}
& V=\pi(33)^{2} \cdot 100 \\
& V=\pi(1089) \cdot 100 \\
& V=3421.20 \\
& V=342119.44
\end{aligned}
$$

Option \#3 - Problem-Specific Rubric

Requirement	Possible Points	Points Earned
Student finds the correct answer based on the dimensions used.	3	
Student uses the correct units (i.e., cubic feet/meters for volume and feet/meters for length)	1	
Student correctly uses half the diameter for the radius and explains why.	2	
Student creates a narrative using sentences to explain his or her reasoning.	2	

Correct answer	\ldots	$/ 3$	Explains $\frac{d}{2}=r$
Correct units	\ldots	$/ 1$	Narrative w/ sentences

What is your conclusion?
In order to solve this problem, you neal the width and the height of the hole. Once you have it you plug them into the equation $r^{2} \pi \cdot h$ which is to find the volume. Once you find the volume you will know how much cement you will need to order so that you could fill that cement hole, which in this case would be 342, 119 feet of cement.

This particular sinkhole in Guatemala City, was about 20 meters (66 feet) in diameter and about 30 meters (100 feet) deep. We are trying to find the volume of the hole to figure cut how much material is needed to fill it. I used the cylinder volume formula $\left(v=\pi r^{2} h\right)$. When you plug in the radius and the height, you get $v=\pi(33)^{2}(100)$. I did not use bb as my radius, because that is my diameter. Radius is half of the diameter. After you solve, you are left with $342,119.44 \mathrm{ft}^{3}$. You don't use ft^{2} or ft because the hole 133 dimensional. From here on, you just use the material cost and amount to find the price of the job.

Correct answer	\ldots	$/ 3$	Explains $\frac{d}{2}=r$
Correct units	\ldots	$/ 1$	Narrative w/ sentences

What is your conclusion?
In order to fill the sinkhole with cement. They will need $342,119 \mathrm{ft} 3$ of cement. How is this possible?
Diameter $=66$ feet, but we are looking for radius.
$66 / 2=33$ Now we got our radius which is 33 .
$r=33$
So we have a radius and height.
Depth $=100$ feet. we can use the volume of a cylinder formula. which is $v=\pi r^{2} h$

$$
\begin{aligned}
& V=\pi(33)^{2} \cdot 100 \\
& V=\pi(1089) \cdot 100 \\
& V=3421.20 \\
& V=342119.44
\end{aligned}
$$

Problem-Based Lesson Resources

- Problem-based lesson search engine: http://robertkaplinsky.com/prbl-search-engine/
- My lessons: http://www.robertkaplinsky.com/lessons
- Dan Meyer: http://threeacts.mrmeyer.com
- Andrew Stadel: http://tinyurl.com/mrstadel
- Graham Fletcher: http://gfletchy.com/3-act-lessons/
- Geoff Krall: http://tinyurl.com/PrBLmaps
- Dan Meyer's TED talk: http://tinyurl.com/meyer-TED

How Many Sheets Do You Need To Break Out Of Prison?
GOperations with rationalinumibersut ENTE

Robert graduated from University of
California, Los Angeles (UCLA) with a Bachelors of Science in Mathematics. He has taught mathematics to students at the elementary, middle, and high school levels. As

Lessons

All Kinder 1st 2nd 3rd 4th 5th 6th 7th 8th Alg Func Geo Modeling Numb \& Quant Stats \& Prob

How Many Hot Dogs And Buns Should He Buy?

What does - 0 Calorie LôOK L/KK:

What Does 2000 Calories Look Like?

Robert Kaplinsky's Problem-Based Lessons
File Edit View Insert Format Data Tools Help All changes saved in Drive
두
\$ $\% \quad 123$
Arial
10
$\mathrm{B} \quad I \quad \mathrm{~A}$

- 田
 Σ

Task Name

How Can We Water All Of The Grass?
How Much Money IS That?!
How Much Money Should Dr. Evil Demand?
How Tall Is Mini-Me?
How Did They Make Ms. Pac-Man?
Which Ticket Option Is The Best Deal?
How Far Apart Are The Freeway Exits?
Do We Have Enough Paint?
How Many Stars Are There In The Universe?
What Rides Can You Go On?
Do You Have Enough Money?
Which Bed Bath \& Bevond Coupon Should You Use?
Is Gas Cheaper With Cash Or Credit Card?
Where's The Nearest Toys R Us?
How Sharp Is The iPhone 5's Retina Display?
When Should She Take Her Medicine?
How Biq Are Sunspots?
What Michael's Coupon Should I Use?
Is It Cheaper To Pay Monthly or Annually?
How Biq Is The 2010 Guatemalan Sinkhole?
How Can You Win Every Prize At Chuck E. Cheese's?
How Many Royal Flushes Will You Get?
How Much Does The Paint On A Space Shuttle Weigh?
How Did Motel 6 Go From $\$ 6$ to $\$ 66$?
How Much Does The Aluminum Foil Prank Cost?
How Many Laps Is A 5k Race?
Which Toilet Uses Less Water?
How Did Someone Get A \$103,000 Speedinq Ticket In Finland? Which Pizza Is A Better Deal?
How Biq Is The World's Larqest Deliverable Pizza?
How Many Sheets Do You Need To Break Out Of Prison?
Do Hybrid Cars Pay For Themselves?
How Many Hot Dogs Did They Eat?!
How Much Purple Ribbon Will You Need? Are We There Yet?
Which Chinese Food Coupon Should I Use?
How Biq Is The Vehicle That Uses Those Tires?
Where Would The Angry Birds Have Landed?
How Many Movies Can You See In One Day?
Which Carrots Should You Buy?
How Fast Can You Throw A Baseball?

B	C	D	E	F	
Concept / Skill	Standard 1	Standard 2	Standard 3	Standard 4	St
Circles, Pythagorean Theorem, trigonometric ratios	7.G. 4	8.G. 7	G-SRT. 8	G-MG. 1	G
Volume of rectangular prism	5.MD. 3	5.MD. 4	5.MD. 5	5.MD.5b	5.1
Exponential Growth	N-RN. 2	A-SSE. 1	A-SSE.3c	A-SSE. 4	A-F
Scale and Dividing Decimals	5.NF. 5	5.NF.5a	5.NF.5b	6.NS. 3	
Transformations (Rotations, Reflections, and Translations)	8.G. 1	8.G. 2	8.G. 3	8.G. 4	G-
Unit Rates and Ratios	6.RP. 2	$6 . R P .3$	6.RP.3a	6.RP.3b	
Fractions on a Number Line and Subtracting Fractions	3.NF. 2	3.NF.2b	4.NF. 2	4.NF.3a	4.1
Area	3.MD. 5	3.MD. 6	3.MD. 7		
Scientific Notation	8.EE. 3	8.EE. 4			
Inequalities and Measurement	2.MD. 1	6.NS.7a	6.NS.7b		
Money	2.MD. 8				
Percent Discount	7.RP.3				
Percent Discount	7.RP.3				
Pythagorean Theorem (Distance in coordinate system)	8.G. 8	G-SRT. 8	G-GPE. 7		
Pythagorean Theorem (Length of a side)	8.G. 7	G-SRT. 8	G-GPE. 7		
Operations with Time Intervals	4.MD. 2				
Converting Units, Proportions, and Scientific Notation	5.MD. 1	7.RP. 2	7.G. 4	8.EE. 4	G
Percent Discount	7.RP. 3	A-CED. 3			
Decimal Operations and/or Systems of Equations	5.NBT. 7	8.EE.8c	A-CED. 3	A-REI. 11	F-
Volume of Cylinder	5.MD. 3	5.MD. 4	5.MD. 5	8.G. 9	G
Decomposing Numbers and/or Systems of Equations	2.NBT. 7	3.NBT. 2	3.NBT. 3	8.EE.8c	A-C
Probability	7.SP. 5	7.SP. 6	7.SP. 7	S-MD. 5	S-
Surface Area	6.G. 4	7.G. 6	8.G.7	G-MG. 1	G
Percent Increase and Compound Interest	7.RP. 3	A-SSE. 1b	F-BF. 1	F-IF.8b	F-L
Surface Area and Unit Rates	6.G. 4	6.RP. 2	6.RP. 3	7.G. 6	
Perimeter	4.MD. 3				
Systems of Equations/Inequalities	8.EE.8c	A-CED. 3	A-REI. 11	F-BF. 1	
Linear Equations	A-CED. 2	F-BF. 1	F-IF. 4	F-IF. 6	
Area or Circle, Square, and Unit Rates	3.MD. 5	3.MD. 6	3.MD. 7	4.MD. 3	6.7
Area of Square	3.MD. 5	3.MD. 6	3.MD. 7	4.NBT. 3	4.1
Integer Operations	5.NBT. 6				
Systems of Equations or Rates	$6 . R P .2$	6.RP. 3	8.EE.8c	A-CED. 3	F-E
Linear and Quadratic Functions	8.F. 3	8.F. 4	F-BF. 1	F-BF. 2	F-
Perimeter \& Circumference	3.MD. 8	4.MD. 3	7.G. 4		
Adding Times	3.MD. 1	4.MD. 2			
Percent Discount	7.RP. 3				
Ratio and Proportions	7.RP. 2				
Create Equation From Quadratic Graph	A-CED. 1	F-BF. 1	F-IF. 4	F-IF.7a	F-L
Adding Times	3.MD. 1	4.MD. 2			
Unit Rates	6.RP. 1	6.RP. 2	6.RP. 3		
Converting Units and Unit Rates	5.MD. 1	6.RP. 2			

Google
 gl

Suloscribe to Lessons

Enter your email address below to receive emails whenever a new lesson is published.

Subscribe

Google Search Im Feeling Lucky

Problem-Based Lesson Search Engine

This search engine searches all of the sites below to quickly help you find a problem-based lesson (also called 3-Act Task, mathematical modeling, or application problem):

Submit

The links below are the pages that are being searched by the search engine:

- 101 Questions
- Andrew Stadel
- Dan Meyer
- Dane Ehlert
- Emergent Math's Problem Based Curriculum Maps
- Estimation180
- Geoff Krall

Subscribe to Biog

Enter your email address below to receive emails whenever a new blog post is published.

Subscribe

Problem-Based lessons

101qs.com

Andrew Stadel

Dan Meyer

Mathalicious

Problem Based Curriculum Maps

