Victor

 Elementary

 Elementary

 School

 School Distric \dagger

 Distric \dagger}

ROBERT KAPLINSKY

3) (D) @robertkaplinsky

Standards for Mathematical Practice

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.

Levels of Convincing

Construct a viable argument

Critique the reasoning of others

Inspired by Connecting Mathematical Ideas by Jo Boaler and Cathy Humphreys

Standards for Mathematical Practice

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

The Reality

- Students were uneasy about not having accurate information about the money pile.
- Many students failed to use units.
- Some students' answers were in the low single millions.
- When combined, those two issues made it unclear if their answers represented the quantity of hundred dollar bills or the value of the hundred dollar bills.
- The most challenging part for students was estimating the quantity of bills in a column.

STUDENT WORK

What is your conclusion? How did you reach that conclusion?
My conclusion is $\$ 2,805,000$. I got my conclusion because I counted 34 rows of money going sideways and 11 going across. Then I multiplied those 2 and got 374 . I then multiplied 374×100 and got 37,400 . I then took a guess on how much money there was in one money stack (75) and multiplied that by 37,400 and that's how I got $\$ 2,805,000$.

What is your conclusion? How did you reach that conclusion?
My Condusion is thatithuec is a oort 201 million delays in currency for the drugbust. I figured it out -by figuring out how much is in zach stack, There wa) fifth thousand in each stack, It is 34 stacks bide by 12 stacks length and by le stacks nigh. I multiplied theme all andgot 2oumillion

What is your conclusion? How did you reach that conclusion?
There was 34 going frameauross the room. and 12 going UP. So what you do is 34 times 12 and you get 408 . Then you multiply 408 by 10 because there was 10 stacks going down and you get 4080. NHA

$$
\begin{gathered}
\text { There are } 125 \\
\text { sheep and } 5 \text { dogs } \\
\text { in a flock. How old } \\
\text { is the shepherd? }
\end{gathered}
$$

Of the 32 students I interviewed...

- 75% of them gave me numerical responses
- 2 students calculated the answer to be $130(125+5)$
- 2 students calculated the answer to be 120 (125-5)
- 12 students calculated the answer to be $25(125 \div 5)$
- 0 students calculated the answer to be 625 (125×5)
- 4 students stated that they guessed their answer (90, 5,42 , and 50)
- 4 students tried to divide 125 by 5 but could not correctly implement the procedure

Takeaways

- Making sense of mathematics
- Intellectual autonomy
- Intellectual autonomy is about being able to think for yourself and not being dependent on others for the direction and control of one's thinking.

What Does the NHTSA Say?

Kev Statistics and Consumer Insights:

- Motor vehicle crashes are the leading cause of death for children age 1 through 12 years old. ${ }^{1}$

According to a NHTSA study, 3 out of 4 kids are not as secure in the car as they should be because their car seats are not being used correctly.

[^0]

- "because they have their child in the right seat"
- "because their car seats are not being used correctly"

IF YOUR CHILD IS IN THE RIGHT CAR SEAT.
Ad
VISIT SAFERCAR.GOV/THERIGHTSEAT

KNOW FOR SURE
IF YOUR CHILD IS IN THE RIGHT CAR SEAT. wwwnhtsa.gov NHTSA

 4 what net now hat -

OLD
(Boring)

NEW

Diamond

Shreddies

Cereal

$$
\begin{gathered}
\text { NEW } \\
\text { (Exciting!) }
\end{gathered}
$$

"Kraft Foods saw an immediate 18\% increase in baseline sales of Shreddies within the first month alone, and for months thereafter."

low/no calories

The main attraction for a busload of Dover fifth-graders was supposed to be the Museum of Fine Arts, but that all changed when they stopped by Kelly's Roast Beef and got a glimpse of their soda-drinking future.

At the entrance of Kelly's sat a sleek Coca-Cola Freestyle fountain crafted to resemble an old-fashioned vending machine, but with a twist: a touchscreen computer embedded in the machine gives customers the option of 125 flavors. You can quench your thirst with a Coke or a Sprite, or try something more exotic - Sprite with Grape or a Hi-C Orange Vanilla.

$$
\begin{aligned}
& \text { Complicated } \\
& \text { or Complex? }
\end{aligned}
$$

Gookie Monster Gupatiks

method

1. Using an electric mixer, whip the butter until it is pale. This will take at least 5 minutes on high.
2. Gradually add in the icing mixture and vanilla until well combined.
3. With the mixer running, add in food colouring until you get to the Cookie Monster colour. This may be a lot if you are using liquid food colouring or a little if using gel food colouring.
4. Add in the milk and mix until the frosting puffs up.
5. Fill a piping bag with a fluted nozzle and pipe on icing.
6. With the writing icing, place black spots on the marshmallows for pupils.
7. Place on each cupcake.
8. Cut cookies in half and place in 'mouth'.

Content and Language Objectives using

Content Objective Example:
SWBAT apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. (MP4)

Language Objective Example:
SWBAT understand and use stated assumptions, definitions, and previously established results in constructing arguments. (MP3)

- In early grades, this might be as simple as writing an addition equation to describe a situation. (MP4)
- In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. (MP4)
- By high school, a student might use geometry to solve a design problem or use a function to describe how one

Problem-Based Lesson Resources

- Problem-based lesson search engine: http://robertkaplinsky.com/prbl-search-engine/
- My lessons: http://www.robertkaplinsky.com/lessons
- Dan Meyer: http://threeacts.mrmeyer.com
- Andrew Stadel: http://tinyurl.com/mrstadel
- Graham Fletcher: http://gfletchy.com/3-act-lessons/
- Geoff Krall: http://tinyurl.com/PrBLmaps
- Dan Meyer's TED talk: http://tinyurl.com/meyer-TED

Home

Search

Facebook

Robert Kaplinsky
 flike Page 837 likes

Be the first of your friends to like this

How I Can Help You

Real World Problems
My workshops help teachers implement problem-based lessons by helping them experience them from both student and teacher perspective, leading to

Depth of Knowledge
Problems at higher depth of knowledge levels have the potential to challenge the most gifted students yet remain accessible to struggling students. I can help teachers

Lessons

How Many Chip Bags Will There Be?

How Many Hot Dogs And Buns Should He Buy?

Search

Facebook

What dOES 20 Calories LÔOK LIKEZ?

What Does 2000 Calories Look Like?

Subscribe for Updates

Enter your information below so you don't miss out on news, blog posts, and lessons! If you live in the United States, enter your zip code and I'll use it to let you know about events near you.

Robert Kaplinsky's Problem-Based Lessons

File Edit View Insert Format Data Tools Add-ons Help

```
ㅁ
O View only
```


Lesson

How Many Chip Bags Will There Be?
How Can We Make Stronger Passwords?
How Many Hot Dogs And Buns Should He Buy?
What Does 2000 Calories Look Like?
How Much Money Are The Coins Worth?
How Many Times Will A Case of Paper Jam?
How Many Soda Combinations Are There On A Coke Freestyle?
What Should The Freeway Sign Show?
How Fast Was The Fastest Motorcycle Speeding Ticket Ever?
How Much Did Patrick Peterson Lose By Not Cashing His Check?
How Many Biscuits Can You Make?
How Much Bigger Should They Make Zoolander's School?
Where Is The Freeway Sign Located?
How Far Apart Are Exits On A Ring Road?
How Much Is One Third Of A Cup Of Butter?
How Do Skytypers Write Messages?
How Big Is The Bermuda Triangle?
What Fraction Of Children Are In The Right Car Seat?
How Much Did The Temperature Drop?
How Much Shorter Are Staggered Pipe Stacks?
How Do You Write A Check To Pay For Something?
How Can We Correct The Scarecrow?
How Much Does A 100x100 In-N-Out Cheeseburger Cost?
How Can We Water All Of The Grass?
How Much Money IS That?!
How Much Money Should Dr. Evil Demand?
How Tall Is Mini-Me?
How Did They Make Ms. Pac-Man?
Which Ticket Option Is The Best Deal?
How Far Apart Are The Freeway Exits?
Do We Have Enough Paint?
How Many Stars Are There In The Universe?
What Rides Can You Go On?
Do You Have Enough Money?
Which Bed Bath \& Beyond Coupon Should You Use?
Is Gas Cheaper With Cash Or Credit Card?
Where's The Nearest Toys R Us?

Concept / Skill

Ratio and Proportions, Population Sampling
Permutations, Combinations, Probability, Exponents, Exponential Growth Least Common Multiple (LCM)
Unit Rates, Ratios, Solving Equations, and Solving Inequalities
Decimal Operations and Coin Counting
Interpreting Percentages
Counting, Composing, and Decomposing Numbers
Fractions on Number Lines, Converting Units, Decimal and Fraction Operations
Converting Units and Unit Rates
Compound and/or Simple Interest
Dividing Fractions and Mixed Numbers
Scale and Proportions
Identifying Fractions on a Number Line
Arc length measures
Identifying Fractions on a Number Line
Transformations (Rotations, Reflections, Dilations, and Translations)
Coordinate Geometry: Area of Triangle
Representing and Comparing Fractions
Absolute Value
Circles, Pythagorean Theorem, trigonometric ratios, and linear functions
Expanded Form
Pythagorean Theorem
Building and Interpretting Linear Functions
Circles, Pythagorean Theorem, trigonometric ratios
Volume of rectangular prism
Exponential Growth
Scale and Dividing Decimals
Transformations (Rotations, Reflections, and Translations)
Unit Rates and Ratios
Fractions on a Number Line and Subtracting Fractions
Area
Scientific Notation
Inequalities and Measurement
Money
Percent Discount
Percent Discount
Pythagorean Theorem (Distance in coordinate system)

Standard 1
RP 3
6.RP3c 7.RP
7.SP. 8 8.EE. 1
6.NS. 4
6.EE. 3

2MD. 8
6.RP.3c
K.CC. 5
3.NF. 1
5.MD. 1
7.RP. 3

5NF 7
5.NF.5A
3.NF. 1

G-C. 5
3.NF. 1 3.NF. 2 3.NF
8.G. 1

G-GPE. 7
3.NF. 1 3.NF
6.NS.7C
8.G. 7
2.NBT. 3
8.G. 6
8.F
7.G. 4
5.MD. 3

N-RN. 2
5.NF. 5
8. G.
6.RP. 2

3NF 2
3.MD. 5
8.EE. 3
2.MD. 1
2.MD. 8
7.RP. 3
7.RP. 3
8.G. 8
3.NF. 2
7.NS.1c A-CED. 1 4.NBT. 2 G-SRT. 4
8.F. 3
8.G. 7
5.MD. 4

A-SSE. 1
5.NF.5a
8.G. 2
6.RP. 3
3.NF.2b
3.MD. 6
8.EE. 4 6.NS.7a

Victor

 Elementary

 Elementary

 School

 School Distric \dagger

 Distric \dagger}

ROBERT KAPLINSKY

3) (D) @robertkaplinsky

CCSS.MATH.CONTENT 4 MIn mm and of Apply the NTENT.4.MD.A. 3 and harder or problems. meetth
equal intensity, equal each grade: con rectangles in real world and mathematical skilsand

Source: http://www.corestandards.org/other-resources/key-shifts-in-mathematics/

What is the perimeter

 of a rectangle that measures 8 units by 4 units?
Components of Rigor

\square Procedural Skill and Fluency

\square Conceptual Understanding

List the dimensions of

a rectangle with a perimeter of 24 units.

Components of Rigor

 [I Procedural Skill and Fluency[I Conceptual Understanding

Components of Rigor

\square Procedural Skill and Fluency

\square Conceptual Understanding

LIst ur angle with a
of a rectangle with perimeter of 24 units.

Components of Rigor

 [I Procedural Skill and Fluency[I Conceptual Understanding

71 A basketball court is shaped like a rectangle 20 meters long and 10 meters wide.

What is the perimeter in meters of the court?

A 30 meters
B 50 meters
C 60 meters
D 200 meters

Source: http://www.cde.ca.gov/ta/tg/sr/documents/cstrtqmath3.pdf

What is the perimeter

 of a rectanglethat measures 8 units by 4 units?

Components of Rigor

\square Procedural Skill and Fluency

\square Conceptual Understanding

Components of Rigor

\square Procedural Skill and Fluency

\square Conceptual Understanding

Of all the rectangles with a perimeter of 24 units, which one has the most area?

Of all the rectangles with a perimeter of 24 units, which one
has the most area?

Components of Rigor

 [I Procedural Skill and Fluency[I Conceptual Understanding

Defining the Problem

- Students appear to demonstrate "deep, authentic command of mathematical concepts" when given commonly used problems.
> However with more challenging problems, the same students seem to no longer demonstrate that command.

Addressing the Problem

$>$ First, we must have a clear understanding about why these problems are different from one another.

- Next, we need to practice using these problems so that we understand how students may react to them.
$>$ Last, we need a source that can provide us with a variety of free problems.

DOK
Distinguishing Between Depth of Knowledge Levels in Mathematics

Topic	Adding Whole Numbers	Money	Fractions on a Number Line	Area and Perimeter	Subtracting Mixed Numbers
$\begin{aligned} & \hline \text { CCSS } \\ & \text { Standard(s) } \end{aligned}$	- 1.NBT. 4 - 2.NBT. 5	- 2.MD. 8	- 3.NF. 2	- 3.MD. 8	- 5.NF. 1
DOK 1 Example	Find the sum. $44+27=$	If you have 2 dimes and 3 pennies, how many cents do you have	Which point is located at $\frac{7}{12}$ below?	Find the perimeter of a rectangle that measures 4 units by 8 units.	Find the difference. $5 \frac{1}{2}-4 \frac{2}{3}=$
DOK 2 Example	Fill in the boxes below using the whole numbers 1 through 9, no more than one time each, so that you make a true equation. \square $+53=$ \square	Make 47\$ in three different ways with either quarters, dimes, nickels, or pennies.	Label the point where $\frac{3}{4}$ belongs on the number line below. Be as precise as possible.	List the measurements of three different rectangles that each has a perimeter of 20 units.	Create three different mixed numbers that will make the equation true by using the whole numbers 1 through 9, no more than one time each. You may reuse the same whole numbers for each of the three mixed numbers. $5 \frac{4}{5}-\square \square=3 \frac{1}{20}$
DOK 3 Example	Make the largest sum by filling in the boxes below using the whole numbers 1 through 9, no more than one time each. \square $+$ \square $=$	Make 47\$ using exactly 6 coins with either quarters, dimes, nickels, or pennies.	Create 5 fractions using the whole numbers 0 through 9 , exactly one time each as numerators and denominators, and place them all on a number line.	What is the greatest area you can make with a rectangle that has a perimeter of 24 units?	Make the smallest difference by filling in the boxes below using the whole numbers 1 through 9, no more than one time each.

DOK
 Distinguishing Between Depth of Knowledge Levels in Mathematics

Topic	Surface Area and Volume	Probability	Transformations	Factoring Quadratics	Quadratics in Vertex Form
$\begin{aligned} & \text { CCSS } \\ & \text { Standard(s) } \end{aligned}$	$\begin{array}{ll} \hline- & 6 . \mathrm{G} .4 \\ \hline & 7 . \mathrm{G.} 6 \end{array}$	$\begin{array}{ll} \hline \text { - } & 7 . S P .5 \\ \text { - } & 7 . S P . ~ \end{array}$	- 8.G. 1 - G-CO. 5	- A-SSE.3a	- F-IF.7a
DOK 1 Example	Find the surface area of a rectangular prism that measures 3 units by 4 units by 5 units.	What is the probability of rolling a sum of 5 using two 6-sided dice?	Rotate the image below 90° counterclockwise about point D and reflect it across a horizontal line.	Find the factors: $2 x^{2}+7 x+3$	Find the roots and maximum of the quadratic equation below. $y=-3(x-4)^{2}-3$
DOK 2 Example	List the measurements of three different rectangular prisms that each have a surface area of 20 square units.	What value(s) have a 1/12 probability of being rolled as the sum of two 6 -sided dice?	List three sequences of transformations that take preimage ABCD to image $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$.	Fill in the blank with integers so that the quadratic expression is factorable. $x^{2}+\ldots x+4$	Create three equations for quadratics in vertex form that have roots at 3 and 5 but have different maximum and/or minimum values.
DOK 3 Example	What is the greatest volume you can make with a rectangular prism that has a surface area of 20 square units?	Fill in the blanks to complete this sentence using the whole numbers 1 through 9, no more than one time each. Rolling a sum of \qquad on two \qquad -sided dice is the same probability as rolling a sum of \qquad on two \qquad sided dice.	What is the fewest number of transformations needed to take pre-image $A B C D$ to image $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$? Pre-Image Image	Fill the blank by finding the largest and smallest integers that will make the quadratic expression factorable. $2 x^{2}+3 x+$	Create a quadratic equation with the largest maximum value using the whole numbers 1 through 9, no more than one time each. $y=-\square(x-\square)^{2}+\square$

$$
\begin{aligned}
& \text { Complicated } \\
& \text { or Complex? }
\end{aligned}
$$

DOK Flowchart for Questions

Source: Tracy Watanabe - @tracywatanabe

DOK 1

Routine Thinking

- Can you recall \square
- Can you identify \qquad
- How would you describe
- What might you include on a list about
- Can you select $?$
- How can you find the meaning of ?

ญP1్నర	Calculat	memorize
measure	neme	recosnize
recall	repeat	idenatily
Tlustrate	match	Pobed
state	list	state

Sயొatesic గొeasoning

- How is
related to ?
-What conclusions can be drawn?
- Can you elaborate on ? - How would you test $?$ - What evidence supports ?
- What would happen if \qquad
-Why is that the best answer?
assess compape consuruct
appriss pevise hyporthesize
critque invesutate
drew conclusions develop \& logical argument

DOK 2
Conceptual Thinking

- Can you explain how \qquad affected?
- How would you apply what you learned to develop ?
- How would you summarize ?
- What do you notice about ?
- How would you estimate
- How could you organize

Extended Reasoning

- Write a research paper. - What information can you gather to support your idea about ?
- Write a thesis, drawing conclusions from multiple sources.
- Apply information from one text to another to develop an persuasive argument.

http://isntitelementary.blogspot.com/

DOK Level Differences

- Level 1: Recall \& Reproduction
- Often a trivial application of facts.
- Generally requires little to no cognitive effort beyond remembering the right formula.
- Usually only one answer.
- Level 2: Skills \& Concepts
- Usually requires more than one step to solve.
- Often multiple answers.

Level 3: Strategic Thinking

- Usually requires critical thinking about the best way to approach a problem.
- May be multiple answers or a single optimal answer.
> Often challenging enough to make your head hurt.
> Level 4: Exłended Thinking
- In mathematics these are generally represented by performance tasks or problem-based lessons.

Adding Decimals

Use the numbers 1

 through 9, exactly one time each, to fill in the boxes and make three decimals whose sum is as close to 1 as possible.

Fifth attempt:

Points: \qquad /2 attempt /2 explanation

Aquatic SI
Point

\qquad

$$
35
$$

What did you learn from this attempt? How will your strategy change on your next attempt?

- When will students ever use this?
- What DOK level should I start students off with?
- How do teachers fit these problems into their pacing?
- How do I help prevent students from giving up after trying the problem once or twice?
- Where can I find other DOK 2 and DOK 3 problems or submit ones l've made?

Open Middle

Source: Dylan Kane

COMMON CORE STATE STANDARDS

- Grade 1 (6)
- Number \& Operations in Base Ten (3)
- Operations \& Algebraic Thinking (3)
- Grade 2 (6)
- Measurement \& Data (2)
- Number \& Operations in Base Ten (4)
- Grade 3 (11)
- Measurement \& Data (6)
- Number \& Operations in Base Ten (3)
- Number \& Operations-Fractions (2)

[^0]: ${ }^{1}$ Source: Based on the latest mortality data currently available from the CDC's National Center for Health Statistics.

