INTRO TO PROBLEM

BASED LEARNING

ROBERT KAPLINSKY

robert@robertkaplinsky.com

robertkaplinsky.com

@robertkaplinsky

COALS

- ENGAGING PROBLEM SOLVING

- REAL WORLD PROBLEM-BASED LEARNING

- HIGHER DEPTH OF KNOWLEDGE PROBLEMS

■ BETTER IMPLEMENTATION

- IMPROVE QUESTION ASKING

RobertKaplinsky.com

HAMBURGER FRENCH FRIES SHAKES

OPEN 10:30 a.m. to 1:00 a.m. Fri. and Sat. until 1:30 a.m.

2004-10-31

YOUR GUEST NUMBER IS
98

$$
\begin{aligned}
& \text { IN-N=OUT BURGER LAS VEGAS EASTERN } \\
& 2004=10-31 \\
& 1651598 \\
& 8: 21 \text { PM }
\end{aligned}
$$

Cashier: SAM

GLEEST
 ```#: 98```

Counter-Eat In

 Dbldbl98 Neat Pty XChz
2.65
88.20

Counter-Eat In
TAX 7.508
90.85

Amount Due
6.81
97.66

CASH TENOER
Change
$\$ 97.66$
$\$.00$
$2004-10-31$

Cashier: SAM
 GLEST
 H: 98

Counter-Eat In

CASH TENOER Change

DblDbl
 98 Meat Pty XChz
 $$
\begin{array}{r} 2.65 \\ 88.20 \end{array}
$$
 Counter-Eat In IAX 7.50 x
 mimount Due 88.20 88.20
 milount Due
 $$
\begin{aligned} & 90.85 \\ & 9.07 \\ & 97.66 \end{aligned}
$$

$\$ 97.66$ $\$.00$

2004-10-31

$$
8: 21 \mathrm{PM}
$$

		¢
Hamburger w/Onion	243	390
Cheeseburger w/Onion	268	480
Double-Double w/Onion	330	670

Layers	Cost
1	$\$ 1.75$
2	$\$ 2.65$
3	$\$ 3.55$
4	$\$ 4.45$
\cdot	\cdot
\cdot	\cdot
20	$\$ 18.85$
\cdot	\cdot
\cdot	\cdot
100	$\$ 90.85$
\cdot	\cdot
\cdot	\cdot
N	$\$ 1.75+(\mathrm{N}-1)^{*} \$ 0.90$

MATH PRACTICES

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.

LEVELS OF CONVINCING

Construct a viable argument

Critique the reasoning of others

Inspired by Thinking Mathematically by J. Mason, L. Burton, and K. Stacey

MATH PRACTICES

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
bun + produce + meat + cheese + meat + cheese = \$2.65
bun + produce + meat + cheese
= \$1.75
meat + cheese = \$0.90

MATH PRACTICES

1. Make sense of problems and persevere in solving them.
2. Reason abstractly and quantitatively.
3. Construct viable arguments and critique the reasoning of others.
4. Model with mathematics.
5. Use appropriate tools strategically.
6. Attend to precision.
7. Look for and make use of structure.
8. Look for and express regularity in repeated reasoning.

THE REALITY

- Students struggled to find a layer's cost.
- Common wrong answers included:
- \$175.00 (\$1.75 x 100 cheeseburgers)
- \$132.50 (\$2.65 x 50 Double-Doubles)
- Some classes were not ready for a 100x100.
- There were equations with more than N patties.
- Students were surprised to see many correct equations.

STUDENT

WORK

The only difference between a double double and a cheeseburger is one patty and one slice of cheese so you subtract the prices of the two to find the price of only one patty $\&$ cheese. You then use that number $(.90)$ \& subtract it from the cost of one whale cheeseburger to find the price of all the extra stuff. Multiply by 100

What is your conclusion?
A 100×100 at in-n-out cost $\$ 90.85$. To solve that, you start by subtracting the price of a cheeseburger from a double double. The answer (.90) is the price of a patty and cheese slice. You multiply (.90) by one less patty than what you want. $(x-1)$, and you add the price of a cheeseburger (1.75). You end up with the eq. $[y=.90(x-1)+1.75$.].
For the 100×100, you plug in 100 to the (x) and you end Up with $\$ 90.85$.

$$
\left[\begin{array}{l}
y=.90(100-1)+1.75 \\
y=89.10+1.75 \\
y=90.85
\end{array}\right]
$$

What 15 your conclusion?
Figure the price difference from the Double-Double with a cheeseburger. Then find out the prize for the produce and cheese-bees. get total into 90.85 NHA

There are 125
 sheep and 5 dogs in a flock. How old is the shepherd?

32 STUDENTS

- 75\% of them gave me numerical responses
- 2 students calculated the answer to be 130 ($125+5$)
- 2 students calculated the answer to be 120 ($125-5$)
- 12 students calculated the answer to be $25(125 \div 5)$
- 0 students calculated the answer to be 625 (125×5)
- 4 students stated that they guessed their answer (90, 5, 42, and 50)
- 4 students tried to divide 125 by 5 but could not correctly implement the procedure

TAKEAWAYS

- Making sense of mathematics
- Intellectual autonomy
- Intellectual autonomy is about being able to think for yourself and not being dependent on others for the direction and control of one's thinking.

What Does the NHTSA Say?

Kev Statistics and Consumer Insights:

- Motor vehicle crashes are the leading cause of death for children age 1 through 12 years old. ${ }^{1}$

According to a NHTSA study, 3 out of 4 kids are not as secure in the car as they should be because their car seats are not being used correctly.

${ }^{1}$ Source: Based on the latest mortality data currently available from the CDC's National Center for Health Statistics.

- "because they have their child in the right seat"
- "because their car seats are not being used correctly"

IF YOUR CHILD IS IN THE RIGHT CAR SEAT.

VIIIT SAFERCAR.GOV/THERIGHTSEAT

KNOW FOR SURE
IF YOUR CHILD IS IN THE RIGHT CAR SEAT. wwwnhtsa.gov NHTSA

PURPOSE OF K-12 ED?

- College readiness
- ACT National Curriculum Survey
- Surveyed 9,937 educators
- What percent of students are "very well" or "well" prepared for college?

2009
2012

Source: act.org/research/policymakers/pdf/NCS-PolicySummary2012.pdf
RobertKaplinsky.com

PURPOSE OF K-12 ED?

- College readiness
- Career readiness
- Association of American Colleges and Universities survey
- Surveyed over 300 employers with at least 25 employees and many new hires
Critical thinking and
analytical reasoning
skills
Analyzing and solving
complex problems
Communicating
effectively orally
and in writing
Applying knowledge
and skills to real-world
setting
Working w/ numbers
and understanding
statistics

Source: aacu.org/leap/documents/2013_EmployerSurvey.pdf
RobertKaplinsky.com

SINKHOLE DIMENSIONS

- Slate Magazine
- "A sinkhole, 65 feet across and 100 feet deep"

RobertKaplinsky.com

How To Fix a Giant Sinkhole

It's not clear whether cement is the best option, however. A 6,500-cubic-foot wad of concrete may serve to concentrate water runoff in other areas, leading to more sinkholes. Many engineers prefer the graded-filter technique, in which the hole is filled with a layer of boulders, then a layer of smaller rocks, and, finally, a layer of gravel. This fills the hole, more or less, while permitting water to drain through the area.

2010 Guatemalan Sinkhole

Kaplinsky, Robert
To:

Hi Brian,

I am using your "How to Fix a Giant Sinkhole" article for a math lesson on volume of a cylinder. I have one question for you. You mentioned.
"It's not clear whether cement is the best option, however. A 6,500-cubic-foot wad of concrete may serve to concentrate water runoff in other areas, leading to more sinkholes."

Can you please tell me where you got 6500 cubic feet from? Did you do 65×100 ? We get something closer to 342,000 cubic feet.

Thanks,
Robert

Reply Reply All Forward v 酔 目

Re： 2010 Guatemalan Sinkhole

Brian Palmer

To：
Kaplinsky, Robert

Apparently you picked the wrong article for a math lesson！I apologize．It appears you are correct．I can＇t find anything in my notes to save myself－－I think I just screwed up．Dunce cap for me．

STUDENT REFLECTIONS

- "I didn't say his answer was wrong since he is supposed to know more than an average 8th grader."
- "Even though Brian was wrong, no one corrected him, because of fear of being wrong and lack of confidence in ourselves."

STUDENT REFLECTIONS

- "I didn't say anything when we were shown the 'right' answer because I thought that it must be right because he's the author, but I knew in my mind he was actually wrong."
- "I think that I should be the one who argues for my opinion, not just listening to others and accepting that my answer is wrong all the time."

 4 what net now hat -

OLD
(Boring)

NEW

Diamond

Shreddies

Cereal

$$
\begin{gathered}
\text { NEW } \\
\text { (Exciting!) }
\end{gathered}
$$

"Kraft Foods saw an

 immediate 18\% increase in baseline sales of Shreddies within the first month alone, and for months thereafter."Source: http://www.visualtargeting.com/diamondshreddies.html

Complicated or Complex?

Gookie Monster Gupatiks

method

1. Using an electric mixer, whip the butter until it is pale. This will take at least 5 minutes on high.
2. Gradually add in the icing mixture and vanilla until well combined.
3. With the mixer running, add in food colouring until you get to the Cookie Monster colour. This may be a lot if you are using liquid food colouring or a little if using gel food colouring.
4. Add in the milk and mix until the frosting puffs up.
5. Fill a piping bag with a fluted nozzle and pipe on icing.
6. With the writing icing, place black spots on the marshmallows for pupils.
7. Place on each cupcake.
8. Cut cookies in half and place in 'mouth'.

Content Objective Example

- SWBAT apply the mathematics
ca they know to solve problems arising in everyday life, society, and the workplace. (MP4)

Language Objective Example

- SWBAT explain correspondences between equations, verbal descriptions, tables, and graphs. (MP1)

[^0]
WHAT'S IT LOOK LIKE...

- when students have procedural skill but not conceptual understanding or the ability to apply mathematics?
- when students can work with numbers but cannot:
- critically think
- applying knowledge and skills to real-world settings
- analyze and solve complex problems

How far apart are the exits on this freeway: Jct 90 and Jefferson Blvd?

1
 $1 \frac{1}{2}-1 \frac{1}{4}$

THE FOUR C's

-Communication -Curiosity

RobertKaplinsky.com

- 6.G.4 - Represent threedimensional figures using nets made up of rectangles and triangles, and use the nets to find the surface area of these figures.
- 7.G.6 - Solve real-world and mathematical problems = involving area, volume and surface area.
: 8.G. 3 Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.
- G-C0.6 Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure.
- A-CED. 1 - Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions.
- F-IF.7a - Graph linear and quadratic functions and show intercepts, maxima, and minima.

6.RP. 2 - Understand the concept of a unit rate

THE FOUR C's

-Communication
-Curiosity
-Critical Thinking

RobertKaplinsky.com

PROBLEM

\section*{| What problem are you trying to figure out? | What estimates do you have? |
| :--- | :--- |
 What info do you already know about the problem? What info do you need about the problem?}

SOLVING

FRAMEWORK

Inspired by Geoff Krall's resources at emergentmath.com

THE FOUR C's

-Communication -Curiosity -Critical Thinking -Content Knowledge

RobertKaplinsky.com

COALS

\square ENGAGING PROBLEM SOLVING

REAL WORLD PROBLEM-BASED LEARNING

- HIGHER DEPTH OF KNOWLEDGE PROBLEMS

\square BETTER IMPLEMENTATION

- IMPROVE QUESTION ASKING

RobertKaplinsky.com

QUESTIONINGSCENARIOS

- The activity begins with teachers in groups of three taking the roles of teacher, student, or observer.
- The individuals playing the role of teacher and student each receive a slip of paper describing their scenario.
- The individual playing the role of observer waits to record all of the teacher's questions to the student.
- Once the activity begins, the teacher will talk to the student in the context of the scenario they read about on the slips of paper.

What did you get for the area of a square with a side length of 4 units?

Great. Do you have any questions?

What did you get for the area of a square with a side length of 4 units?

Great. How did you get your answer?

Each side is 4 so II added 4 together $4 k$ times and got 16 .

COALS

- ENGAGING PROBLEM SOLVING

REAL WORLD PROBLEM-BASED LEARNING

- HIGHER DEPTH OF KNOWLEDGE PROBLEMS

© BETTER IMPLEMENTATION
© IMPROVE QUESTION ASKING

RobertKaplinsky.com

CCSS.MATH.CONTENT 4 MIn mm and of Apply the NTENT.4.MD.A. 3 and harder or problems. meetth
equal intensity, equal each grade: con rectangles in real world and mathematical skilsand

Source: http://www.corestandards.org/other-resources/key-shifts-in-mathematics/

$$
\begin{aligned}
& \text { What is the } \\
& \text { perimeter of a } \\
& \text { rectangle that } \\
& \text { measures } 8 \text { units } \\
& \text { by } 4 \text { units? }
\end{aligned}
$$

COMPONENTS OF RIGOR

区 Procedural Skill and

Fluency

凹 Conceptual Understanding

List the
 dimensions of a rectangle with a perimeter of 24 units.

COMPONENTS OF RIGOR

x Procedural Skill and Fluency
\times Conceptual Understanding

COMPONENTS OF RIGOR

区 Procedural Skill and

Fluency

凹 Conceptual Understanding

LIst ur angle with a
of a rectangle with perimeter of 24 units.

COMPONENTS OF RIGOR

x Procedural Skill and Fluency
\times Conceptual Understanding

71 A basketball court is shaped like a rectangle 20 meters long and 10 meters wide.

What is the perimeter in meters of the court?

A 30 meters
B 50 meters
C 60 meters
D 200 meters

Source: http://www.cde.ca.gov/ta/tg/sr/documents/cstrtqmath3.pdf

What is the perimeter

 of a rectanglethat measures 8 units by 4 units?

COMPONENTS OF RIGOR

区 Procedural Skill and

Fluency

凹 Conceptual Understanding

COMPONENTS OF RIGOR

区 Procedural Skill and

Fluency

凹 Conceptual Understanding

$$
\begin{gathered}
\text { Of all the } \\
\text { rectangles with a } \\
\text { perimeter of } \mathbf{2 4} \\
\text { units, which one } \\
\text { has the most area? }
\end{gathered}
$$

Of all the rectangles with a perimeter of 24 units, which one
has the most area?

COMPONENTS OF RIGOR

x Procedural Skill and Fluency
\times Conceptual Understanding

DEFINING THEPROBLEM

- Students appear to demonstrate "deep, authentic command of mathematical concepts" when given commonly used problems.
- However with more challenging problems, the same students seem to no longer demonstrate that command.

ADDRESSING THEPROBLEM

- First, we must have a clear understanding about why these problems are different from one another.
- Next, we need to practice using these problems so that we understand how students may react to them.
- Last, we need a source that can provide us with a variety of free problems.

Depth of Knowledge Matrix - Elementary \& Secondary Math

Topic	Adding Whole Numbers	Money	Fractions on a Number Line	Area and Perimeter	Subtracting Mixed Numbers
$\begin{aligned} & \text { CCSS } \\ & \text { Standard(s) } \end{aligned}$	- 1.NBT. 4 - 2.NBT. 5	- 2.MD. 8	- 3.NF. 2	$\begin{array}{ll} \hline- & 3 . M D .8 \\ - & 4 . M D .3 \end{array}$	- 5.NF. 1
DOK 1 Example	Find the sum. $44+27=$	If you have 2 dimes and 3 pennies, how many cents do you have?	Which point is located at $\frac{7}{12}$ below?	Find the perimeter of a rectangle that measures 4 units by 8 units.	Find the difference. $5 \frac{1}{2}-4 \frac{2}{3}=$
DOK 2 Example	Fill in the boxes below using the whole numbers 1 through 9, no more than one time each, so that you make a true equation. \square $+53=$ \square	Make 47 $\$$ in three different ways with either quarters, dimes, nickels, or pennies.	Label the point where $\frac{3}{4}$ belongs on the number line below. Be as precise as possible.	List the measurements of three different rectangles that each has a perimeter of 20 units.	Create three different mixed numbers that will make the equation true by using the whole numbers 1 through 9, no more than one time each. You may reuse the same whole numbers for each of the three mixed numbers. $5 \frac{4}{5}-\square \square=3 \frac{1}{20}$
DOK 3 Example	Make the largest sum by filling in the boxes below using the whole numbers 1 through 9, no more than one time each.	Make 47 $\$$ using exactly 6 coins with either quarters, dimes, nickels, or pennies.	Create 5 fractions using the whole numbers 0 through 9 , exactly one time each as numerators and denominators, and place them all on a number line.	What is the greatest area you can make with a rectangle that has a perimeter of 24 units?	Make the smallest difference by filling in the boxes below using the whole numbers 1 through 9, no more than one time each.

Depth of Knowledge Matrix - Elementary \& Secondary Math

Topic	Surface Area and Volume	Probability	Transformations	Factoring Quadratics	Quadratics in Vertex Form
$\begin{aligned} & \text { CCSS } \\ & \text { Standard(s) } \end{aligned}$	$\begin{array}{ll} \bullet & \text { 6.G. } 4 \\ - & 7 . G .6 \end{array}$	- 7.SP. 5	$\begin{array}{ll} \hline \text { - } & \text { 8.G. } 1 \\ \text { - } & \text { G-CO. } \end{array}$	- A-SSE.3a	- F-IF.7a
DOK 1 Example	Find the surface area of a rectangular prism that measures 3 units by 4 units by 5 units.	What is the probability of rolling a sum of 5 using two 6-sided dice?	Rotate the image below 90° counterclockwise about point D and reflect it across a horizontal line.	Find the factors: $2 x^{2}+7 x+3$	Find the roots and maximum of the quadratic equation below. $y=-3(x-4)^{2}-3$
DOK 2 Example	List the measurements of three different rectangular prisms that each have a surface area of 20 square units.	What value(s) have a $1 / 12$ probability of being rolled as the sum of two 6 -sided dice?	List three sequences of transformations that take preimage ABCD to image $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$.	Find three different integers to put in the blank that will make the quadratic expression factorable. $x^{2}+\ldots x+4$	Create three equations for quadratics in vertex form that have roots at 3 and 5 but have different maximum and/or minimum values.
DOK 3 Example	What is the greatest volume you can make with a rectangular prism that has a surface area of 20 square units?	Fill in the blanks to complete this sentence using the whole numbers 1 through 9, no more than one time each. Rolling a sum of \qquad on two \qquad -sided dice is the same probability as rolling a sum of \qquad on two \qquad sided dice.	What is the fewest number of transformations needed to take pre-image $A B C D$ to image $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$? Pre-Image Image	Fill the blank by finding the largest and smallest integers that will make the quadratic expression factorable. $2 x^{2}+3 x+$	Create a quadratic equation with the largest maximum value using the whole numbers 1 through 9, no more than one time each. $y=-\square(x-\square)^{2}+\square$

Complex or
 Complicated?

DOK FLOWCHART

RobertKaplinsky.com

DOK

POSTERS

Source: Penny Lund
isntitelementary.blogspot.com/

Created by Penny Lund 2013

DOK LEVELDIFFERENCES

Level 1: Recall \& Reproduction

- Often a trivial application of facts.
- Generally requires little effort beyond remembering a formula.
- Usually only one answer.

Level 2: Skills \& Concepts

- Usually requires more than one step to solve.
- Often multiple answers.

Level 3: Strategic Thinking

- Usually requires critical thinking about how to approach a problem.
- May be multiple answers or a single optimal answer.
- Often challenging enough to make your head hurt.

Level 4: Extended Thinking

- These are generally represented by performance tasks or problembased lessons.

ADDING DECIMALS

Use the numbers 1 through 9, exactly one time each, to fill in the boxes and make three decimals whose sum is as close to 1 as possible.

Fifth attempt:

Points: \qquad /2 attempt /2 explanation

Aquatic SI
Point

\qquad

$$
35
$$

What did you learn from this attempt? How will your strategy change on your next attempt?

DOK FAQ

- When will students ever use this?
- What DOK level should I start students with?
- How do teachers fit these problems in?
- How do I help prevent students from giving up after trying the problem once or twice?
- Where can I find other DOK 2 and DOK 3 problems or submit ones l've made?

Open Middle
 Challenging math problems worth solving

THE TOP 10 MO

1. Two-Step Equation
2. Order of Operations

ivil, Daniel Luevanos, and Robert Kaplinsky
3. Dot Card Counting by
4. Rational and Irrational Numbers by Bryan Anderson
5. One Solution, No Solutions, Infinite Solutions by Bryan Anderson
6. Multiplying a Two-Digit Number by a Single-Digit Number by Robert Kaplinsky
7. Exponents and Order of Operations by Zack Miller
8. Converting Between Fractions and Decimals by Robert Kaplinsky
9. Interpretting Percentages by Robert Kaplinsky
10. Two-Step Equations 3 by Erick Lee

WHAT ARE PEOPLE SAYING ABOUT OPEN MIDDLE?

Brian Marks

@Yummymath

Search

OPEN MIDDLE WORKSHEET

Download the Open Middle Worksheet (Regular): Version 1.2

Download the Open Middle Worksheet (Large): Version 1.1

SUBSCRIBE

Receive emails every time a new problem is published.

Enter your e-mail address

Subscribe

BROWSE BY COMMON CORE STATE STANDARDS
\square Kindergarten (6)
\square Counting \& Cardinality (2)
\square Number \& Operations in Base Ten (1)

Open Middle
 Challenging math problems worth solving

COALS

© ENGAGING PROBLEM SOLVING

REAL WORLD PROBLEM-BASED LEARNING

■ HIGHER DEPTH OF KNOWLEDGE PROBLEMS
© BETTER IMPLEMENTATION
© IMPROVE QUESTION ASKING

RobertKaplinsky.com

PBL RESOURCES

- Problem-based lesson search engine: robertkaplinsky.com/prbl-search-engine
- My lessons (Elementary, Middle, and High School) robertkaplinsky.com/lessons
- Dan Meyer (Middle and High School) threeacts.mrmeyer.com
- Andrew Stadel (Elementary and Middle School) www.estimation180.com/lessons.html
- Graham Fletcher (Elementary and Middle School) gfletchy.com/3-act-lessons

Robert Kaplinsky

Home

How I Can Help You

Real World Problems

My workshops help teachers implement problem-based lessons by helping them experience them from both student and teacher perspective, leading to increase students' success with performance tasks and the Common Core State Standards.

Depth of Knowledge

Problems at higher depth of knowledge levels have the potential to challenge your most talented student yet remain accessible to everyone. I can help teachers develop best practices for implementing them so that students persevere longer towards finding the solution.

Search

Type and hit enter
Q

Subscribe for Updates

Do you like the ideas you're reading? If so, you'll love having the best ones sent to you via email!

Enter your information below and I'II send you a short email each Tuesday about an idea you can use with your students right away.

If you live in the United States, enter your zip code and I'Il use it to let you know about events near you.

First Name

Last Name

Robert Kaplinsky

Lessons

How Many Chip Bags Will There $\mathbf{B e}$?

Search

Type and hit enter
Q

Subscribe for Updates

Do you like the ideas you're reading? If so, you'll love having the best ones sent to you via email!

Enter your information below and I'Il send you a short email each Tuesday about an idea you can use with your students right away.

If you live in the United States, enter your zip code and l'll use it to let you know about events near you.

First Name
How Can We Make Stronger Passwords?

File Edit View Insert Format Data Tools Add-ons Help All changes saved in Drive

Lesson

B	C	D
Concept / Skill	Standard 1	Standard 2
Money, Multiplying Decimals, Proportions	4.MD. 2	5.NBT. 5
Dividing Decimals	6.NS. 3	
Ratio and Proportions, Population Sampling	6.RP. 3	6. RP.3C
Permutations, Combinations, Probability, Exponents, Exponential Growth	7.SP. 8	8.EE. 1
Least Common Multiple (LCM)	6.NS. 4	
Unit Rates, Ratios, Solving Equations, and Solving Inequalities	6.EE. 3	6.EE. 4
Decimal Operations and Coin Counting	2.MD. 8	5.NBT.7
Interpreting Percentages	6. RP.3C	7.RP. 3
Counting, Composing, and Decomposing Numbers	K.CC. 5	K.CC. 6
Fractions on Number Lines, Converting Units, Decimal and Fraction Operations	3.NF. 1	3.NF. 2
Converting Units and Unit Rates	5.MD. 1	6.RP.3d
Compound and/or Simple Interest	7.RP. 3	N-RN. 2
Dividing Fractions and Mixed Numbers	5.NF. 7	5.NF.7a
Scale and Proportions	5.NF.5A	7.RP. 2
Identify ing Fractions on a Number Line	3. NF. 1	3.NF. 2
Arc length measures	G-C. 5	
Identify ing Fractions on a Number Line	3.NF. 1	3.NF. 2
Transformations (Rotations, Reflections, Dilations, and Translations)	8.G. 1	8.G. 2
Coordinate Geometry: Area of Triangle	G-GPE. 7	
Representing and Comparing Fractions	3. NF. 1	3.NF. 2
Absolute Value	6.NS.7c	7.NS.1c
Circles, Pythagorean Theorem, trigonometric ratios, and linear functions	8.G. 7	A-CED. 1
Expanded Form	2.NBT. 3	4.NBT. 2
Pythagorean Theorem	8.G. 6	G-SRT. 4
Building and Interpretting Linear Functions	8.F. 1	8.F.3
Circles, Pythagorean Theorem, trigonometric ratios	7.G. 4	8.G. 7
Volume of rectangular prism	5.MD. 3	5.MD. 4
Exponential Growth	N-RN. 2	A-SSE. 1
Scale and Dividing Decimals	5.NF. 5	5. NF.5a
Transformations (Rotations, Reflections, and Translations)	8.G. 1	8.G. 2
Unit Rates and Ratios	6.RP. 2	6. RP. 3
Fractions on a Number Line and Subtracting Fractions	3.NF. 2	3.NF.2b
Area	3.MD. 5	3.MD. 6

Sheet1 -

INTRO TO PROBLEM

BASED LEARNING

ROBERT KAPLINSKY

robert@robertkaplinsky.com

robertkaplinsky.com/wmc17

@robertkaplinsky

[^0]: * In early grades, this might be as simple as writing an addition equation to describe a situation. (MP4)
 - In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. (MP4)
 - By high school, a student might use geometry to solve a design problem or use a function to describe how one

