CHALLENGING PROBLEMS

WORTH SOLVING

ROBERT KAPLINSKY

robert@robertkaplinsky.com

robertkaplinsky.com

@robertkaplinsky

GOALS

QWHY DO WE NEED THEM?

- WHY ARE THEY DIFFERENT?

- HOW DO YOU IMPLEMENT THEM?

- HOW DO YOU CREATE YOUR OWN?

- WHERE DO YOU GET OTHERS?

RobertKaplinsky.com

Student Name	ID Number	Perf. Level	Scaled Score	Mathematics Clusters (Clusters where the percent correct is shown in bold represent proficiency for that cluster.)									
				Rational numbers		Exponents and	powers, oots	Quantitative relationships and evaluating expressions		Multi-step problems, graphing, and functions		Measurement geometry	
				Number Correct	Percent Correct	Number Correct	Perc Corr						
-	-	ADV	476	13	93\%	8	100\%	8	80\%	14	93\%	12	92°
4	-	ADV	464	13	93\%	7	88\%	8	80\%	15	100\%	11	85
$\underline{3}$	\square	ADV	453	10	71\%	8	100\%	10	100\%	14	93\%	11	85
18	\square	ADV	453	13	93\%	8	100\%	9	90\%	12	80\%	11	85
1	-	ADV	444	14	100\%	7	88\%	8	80\%	13	87\%	10	77
1	\square	ADV	444	12	86\%	8	100\%	8	80\%	15	100\%	10	77
-	-	ADV	444	13	93\%	8	100\%	8	80\%	14	93\%	9	69
18	\square	ADV	435	12	86\%	6	75\%	9	90\%	14	93\%	10	77
x^{2}	\square	ADV	435	12	86\%	6	75\%	8	80\%	14	93\%	11	85
10	\square	ADV	435	13	93\%	7	88\%	9	90\%	12	80\%	10	77
18	-	ADV	427	13	93\%	6	75\%	9	90\%	12	80\%	10	77
-	\square	ADV	427	13	93\%	7	88\%	6	60\%	13	87\%	11	85
-	\square	ADV	427	14	100\%	5	63\%	7	70\%	14	93\%	10	77
4	T	ADV	421	13	93\%	6	75\%	6	60\%	14	93\%	10	77
(1)	-	ADV	421	11	79\%	5	63\%	9	90\%	13	87\%	11	85
10	\square	ADV	414	12	86\%	6	75\%	8	80\%	11	73\%	11	85
-	\square	ADV	414	12	86\%	8	100\%	8	80\%	13	87\%	8	62°
$1{ }^{-1-1}$	\square	PRO	408	11	79\%	6	75\%	9	90\%	11	73\%	10	77
(20)	-	PRO	402	12	86\%	8	100\%	9	90\%	8	53\%	11	85
1	-	PRO	402	8	57\%	7	88\%	8	80\%	13	87\%	10	77
-	\square	PRO	402	13	93\%	6	75\%	7	70\%	13	87\%	8	62°
-	-	PRO	402	11	79\%	5	63\%	7	70\%	11	73\%	12	92
4	-	PRO	402	13	93\%	7	88\%	9	90\%	10	67\%	7	54
-	-	PRO	402	13	93\%	7	88\%	7	70\%	11	73\%	8	62°
-	-	PRO	396	10	71\%	6	75\%	9	90\%	14	93\%	7	54
18	\square	PRO	396	12	86\%	8	100\%	6	60\%	9	60\%	11	85
-	\square	PRO	380	10	71\%	7	88\%	8	80\%	11	73\%	7	54
-	\square	PRO	375	14	100\%	5	63\%	6	60\%	10	67\%	6	46°
10	18	PRO	375	8	57\%	7	88\%	8	80\%	11	73\%	8	62°
10^{1-1}	-	PRO	375	10	71\%	5	63\%	8	80\%	11	73\%	8	62°
$\underline{4}$		PRO	375	12	86\%	4	50\%	6	60\%	12	80\%	7	54

52 What is the slope of this line?

A $\frac{1}{2}$
B $\frac{3}{4}$

C 1

D $\frac{4}{3}$

Source: California Released Test Questions (7 ${ }^{\text {th }}$ Grade Math)

Student Name	ID Number	Perf. Level	Scaled Score	Mathematics Clusters (Clusters where the percent correct is shown in bold represent proficiency for that cluster.)									
				Rational numbers		Exponents, powers, and roots		Quantitative relationships and evaluating expressions		Multi-step problems, graphing, and functions		Measurement geometry	
				Number Correct	Percent Correct	Number Correct	$\begin{aligned} & \text { Perc } \\ & \text { Corr } \end{aligned}$						
-	\square	ADV	476	13	93\%	8	100\%	8	80\%	14	93\%	12	92
-	-	ADV	464	13	93\%	7	88\%	8	80\%	15	100\%	11	85
1	-	ADV	453	10	71\%	8	100\%	10	100\%	14	93\%	11	85
$1 x^{2}+$	-	ADV	453	13	93\%	8	100\%	9	90\%	12	80\%	11	85
-			144	14	100\%	7	88\%			13	87\%	10	77
-					86\%	8					\%	10	77
1												9	69
-							,				\%	10	77
-											93\%	11	85
10					\%						80\%	10	77
1		V			3\%						80\%	10	77
-					93\%						87\%	11	85
-					100\%						93\%	10	77
析					93\%						93\%	10	77
1					79\%	5					87\%	11	85
10					86\%	6					73\%	11	85
1				12	86\%	8	100			13	87\%	8	62°
-		PRU	408	11	79\%	6	75\%	9	90\%	11	73\%	10	77
x	-	PRO	402	12	86\%	8	100\%	9	90\%	8	53\%	11	85
-	-	PRO	402	8	57\%	7	88\%	8	80\%	13	87\%	10	77
10^{2}	-	PRO	402	13	93\%	6	75\%	7	70\%	13	87\%	8	62
-		PRO	402	11	79\%	5	63\%	7	70\%	11	73\%	12	92
-	-	PRO	402	13	93\%	7	88\%	9	90\%	10	67\%	7	54
-	-	PRO	402	13	93\%	7	88\%	7	70\%	11	73\%	8	62°
10	\square	PRO	396	10	71\%	6	75\%	9	90\%	14	93\%	7	54
10	\square	PRO	396	12	86\%	8	100\%	6	60\%	9	60\%	11	85
-	-	PRO	380	10	71\%	7	88\%	8	80\%	11	73\%	7	54
-	\square	PRO	375	14	100\%	5	63\%	6	60\%	10	67\%	6	46
10	\square	PRO	375	8	57\%	7	88\%	8	80\%	11	73\%	8	62°
-	-	PRO	375	10	71\%	5	63\%	8	80\%	11	73\%	8	62°
$x+2$		PRO	375	12	86\%	4	50\%	6	60\%	12	80\%	7	54

GOALS

■WHY DO WE NEED THEM?

- WHY ARE THEY DIFFERENT?

- HOW DO YOU IMPLEMENT THEM?

- HOW DO YOU CREATE YOUR OWN?

- WHERE DO YOU GET OTHERS?

RobertKaplinsky.com

PROBLEM ONE

Solve for x .

$$
21+x=70
$$

RobertKaplinsky.com

PROBLEM TWO

Using the digits 1 to 9, at most one time each, create two equations: one where x has a positive value and one where x has a negative value.

RobertKaplinsky.com

PROBLEM THREE

Using the digits 1 to 9, at most one time each, create an equation where x has the greatest possible value.

RobertKaplinsky.com

MS \& HS \#MTBoS Ts, please ask your Ss these 3 ?s and put the \% who answered correctly here:
docs.google.com/forms/d/e/1FAI Answers at top of form.

PROBLEM RESULTS

RobertKaplinsky.com

Depth of Knowledge Matrix - Secondary Math

Topic	Dividing Fractions	Solving One-Step Equations	Exponents	Solving Equations with Variables on Both Sides
$\begin{aligned} & \hline \text { CCSS } \\ & \text { Standard(s) } \end{aligned}$	- 6.NS. 1	- 7.EE.4a	- 8.EE. 1	- 8.EE. 8 - A-REI. 3
DOK 1 Example	Evaluate. $\frac{4}{9} \div \frac{2}{5}$	Solve for x . $21+x=70$	Evaluate. 3^{4}	Solve for x . $3 x+2=-2 x+4$
DOK 2 Example	Use the digits 1 to 9 , at most one time each, to fill in the boxes to make two different pairs of fractions that have a quotient of $2 / 3$.	Use the digits 1 to 9 , at most one time each, to create two equations: one where x has a positive value and one where x has a negative value. \square $+x=$ \square	Use the digits 1 to 9 , at most one time each, to fill in the boxes to make two true number sentences.	Use the digits 1 to 9 , at most two times each, to fill in the boxes to make an equation with no solutions. $\square x+\square=\square x+\square$
DOK 3 Example	Use the digits 1 to 9 , at most one time each, to fill in the boxes to make two fractions that have a quotient that is as close to $4 / 11$ as possible.	Use the digits 1 to 9 , at most one time each, to create an equation where x has the greatest possible value. \square $+x=$ \square	Use the digits 1 to 9 , at most one time each, to fill in the boxes to make a result that has the greatest value possible.	Use the digits 1 to 9 , at most one time each, to fill in the boxes so that the solution is closest to zero. $\square x+\square=\square x+\square$

Depth of Knowledge Matrix - Secondary Math

Topic	Geometric Proofs	Complex Numbers	Trigonometric Functions	Definite Integral
$\begin{aligned} & \text { CCSS } \\ & \text { Standard(s) } \end{aligned}$	- G-CO. 11	- N-CN. 2	- F-TF. 3	- N/A
DOK 1 Example	Add one geometric marking to demonstrate the quadrilateral is a square.	Multiply the binomials. $(3+4 i)(2+3 i)$	Evaluate. $\sin \frac{\pi}{3}$	Solve. $\int_{2}^{6} x^{3} d x$
DOK 2 Example	Use exactly 5 geometric markings to show that a quadrilateral is a square.	Use the integers -9 to 9 , at most one time each, to fill in the boxes twice: once to make a positive real number product and once to make a negative real number product. $(\square+\square i)(\square+\square i)$	Use the digits 1 to 9 , at most one time each, to fill in the boxes and make two true number sentences. $\sin \frac{\square \pi}{\square}=1$	Use the digits 1 to 9 , at most one time each, to fill in the boxes and make a positive and a negative solution. $\int^{x} d x$
DOK 3 Example	What is the least number of geometric markings needed to demonstrate that a quadrilateral is a square?	Use the integers -9 to 9 , at most one time each, to fill in the boxes and make a real number product with the greatest value. $(\square+\square i)(\square+\square i)$	Use the digits 1 to 9 , at most one time each, to fill in the boxes to make two true number sentences.	Use the digits 1 to 9 , at most one time each, to fill in the boxes and make a solution that is as close to 100 as possible. $\int_{x} x d x$

DOK ONE

6. $9+a=46$

DOK TWO

11. Anton walked 8.9 miles of his 13.5 -mile goal for this week. Use the equation $m+8.9=13.5$ to find which path Anton should walk so that he meets his goal for the week.

Path Irengths

Meadow Path 3.2 miles
Circle Path 4.2 miles
Oak Tree Path 4.6 miles

DOK THREE

14. Reasoning Kyle bought a movie ticket for $\$ 8.45$ and a drink for $\$ 1.80$. He had just enough money remaining to buy a large popcorn. How much money did Kyle start with? Write an equation to show your reasoning. © MP. 2

Cost of Popcorn

Small	$\$ 2.85$
Medium	$\$ 3.75$
Large	$\$ 4.75$
Extra Large	$\$ 4.85$

GOALS

■WHY DO WE NEED THEM?

© WHY ARE THEY DIFFERENT?

- HOW DO YOU IMPLEMENT THEM?

- HOW DO YOU CREATE YOUR OWN?

- WHERE DO YOU GET OTHERS?

RobertKaplinsky.com

IMPLEMENTATION

- Open Middle Worksheet
\qquad /2 attempt

What did you learn from this attempt? How will your strategy change on your next attempt?

IMPLEMENTATION

- Open Middle Worksheet - Classwork
- Single problem for entire class
- Extensions menu

QUESTION \#1
Use the digits 1 to 9 , at most one time each, to create an equation where x has the greatest possible value.

QUESTION \#4

Use the digits 1 to 9, at most one time each, to make each equation true.

$$
\begin{array}{r}
\square+a=\square \\
\square b=\square \\
c-\square=\square \\
a=\square, b=\square, \\
c=\square
\end{array}
$$

QUESTION \#2

Solve for x .

$$
3 x+7=19
$$

1 point
SOLVING EQUATIONS EXTENSION MENU

You must earn at least 12 points by doing the problems of your choice. Circle the questions you have answered.

QUESTION \#3
Use the digits 1 to 9 . at most one time each, to create two equations: one where x has a positive value and one where x has a negative value.

$$
\begin{aligned}
& +x= \\
& 2 \text { points }
\end{aligned}
$$

QUESTION \#5

Use the digits 1 to 9 . at most one time each, to create an equation where x has the greatest possible value.

IMPLEMENTATION

- Open Middle Worksheet
- Classwork
- Single problem for entire class
- Extensions menu
- Homework
- Assessments

GOALS

■WHY DO WE NEED THEM?

© WHY ARE THEY DIFFERENT?

© HOW DO YOU IMPLEMENT THEM?

- HOW DO YOU CREATE YOUR OWN?

- WHERE DO YOU GET OTHERS?

RobertKaplinsky.com

STEP ONE

- Find a One-Operation Problem
- Addition
- Subtraction
- Multiplying
- Dividing
- Exponents (including square root)
- Trigonometric functions

ADDING 2-DIGIT NUMBERS

Solve.

$$
41+36=
$$

MULTIPLYING FRACTIONS

Solve.

STEP TWO

- Go from DOK 1 to DOK 2
- Strategically remove some information from the problem to prevent immediate calculation
- Increase the quantity of solutions needed to increase the need to look for patterns

ADDING 2-DIGIT NUMBERS
Using the digits 1 to 9, at most one time each, fill in the boxes to make two different pairs of two-digit numbers that have a sum of 71.

MULTIPLYING FRACTIONS

Using the digits 1 to 9, at most one time each, fill in the boxes to make two different pairs of fractions that have a product of $2 / 3$.

STEP THREE

- Go from DOK 2 to DOK 3
- Introduce the need to optimize the solution by making the greatest or least product / sum / difference / quotient / answer.
- Another optimization option is make the answer closest to a specific value.

ADDING 2-DIGIT NUMBERS

Using the digits 1 to 9, at most one time each, fill in the boxes to make the smallest sum.

MULTIPLYING FRACTIONS

Using the digits 1 to 9, at most one time each, fill in the boxes to make two fractions that have a product that is as close to 4/11 as possible.

3 Steps to Increase Math DOK Levels

Step 1: Find a One-Operation Problem

- Procedural problems with one operation are easiest to modify.
- Other problems may also be modified but may not be as easy.

Adding 2-Digit Numbers
Solve.
$41+36=$ \qquad

Multiplying Fractions
Solve.
$\frac{3}{7} \times \frac{2}{9}=$ \qquad

Trigonometry
Solve.
$\sin \frac{\pi}{3}=$

Step 2: Go from DOK 1 to DOK 2

- Strategically remove some information from the problem to prevent immediate calculation
- Increase the quantity of solutions needed to increase the need to look for patterns

Adding 2-Digit Numbers
Using the digits 1 to 9 , at most one time each, fill in the boxes to make two different pairs of two-digit numbers that have a sum of 71 .

$$
\square+\square=71
$$

Multiplying Fractions
Using the digits 1 to 9 , at most one time each, fill in the boxes to make two different pairs of fractions that have a product of 2/3.

$$
\frac{\square}{\square} x=\frac{2}{3}
$$

Trigonometry
Using the digits 1 to 9 , at most one time each, fill in the boxes to make two true number sentences.

$$
\sin \frac{\square \pi}{\square}=0
$$

Problem Drives Inquiry

Yes

WHAT TEACHER MOVES?

- What conversations would you want to happen when using the Adding 2-Digit Number DOK 3 problem?
- How will you ensure they happen?
- Where might students get stuck?
- What might you say or do if they do get stuck?

GOALS

■WHY DO WE NEED THEM?

© WHY ARE THEY DIFFERENT?

- HOW DO YOU IMPLEMENT THEM?

© HOW DO YOU CREATE YOUR OWN?

- WHERE DO YOU GET OTHERS?

RobertKaplinsky.com

Open Middle
 Challenging math problems worth solving

THE TOP 10 MO

1. Two-Step Equation
2. Order of Operations

ivil, Daniel Luevanos, and Robert Kaplinsky
3. Dot Card Counting by
4. Rational and Irrational Numbers by Bryan Anderson
5. One Solution, No Solutions, Infinite Solutions by Bryan Anderson
6. Multiplying a Two-Digit Number by a Single-Digit Number by Robert Kaplinsky
7. Exponents and Order of Operations by Zack Miller
8. Converting Between Fractions and Decimals by Robert Kaplinsky
9. Interpretting Percentages by Robert Kaplinsky
10. Two-Step Equations 3 by Erick Lee

WHAT ARE PEOPLE SAYING ABOUT OPEN MIDDLE?

Brian Marks

@Yummymath

Search

OPEN MIDDLE WORKSHEET

Download the Open Middle Worksheet (Regular): Version 1.2

Download the Open Middle Worksheet (Large): Version 1.1

SUBSCRIBE

Receive emails every time a new problem is published.

Enter your e-mail address

Subscribe

BROWSE BY COMMON CORE STATE STANDARDS
\square Kindergarten (6)
\square Counting \& Cardinality (2)
\square Number \& Operations in Base Ten (1)

Open Middle
 Challenging math problems worth solving

 Open Middle @openmiddle • Jan 11

0
Open Middle
@openmiddle
Hey @openmiddle fans, we want to hear from you. Why do you use our problems with your students? Share your success stories or lessons learned.

	vets	LIKES	ค
		6	\pm

2:10 PM - 11 Jan 2017
↔ 8
¢7 7
06

- θ

↔
27 1

GOALS

■WHY DO WE NEED THEM?

© WHY ARE THEY DIFFERENT?

$\boxed{-}$ HOW DO YOU IMPLEMENT THEM?

© HOW DO YOU CREATE YOUR OWN?

■ WHERE DO YOU GET OTHERS?

RobertKaplinsky.com

Robert Kaplinsky

Home

How I Can Help You

Real World Problems

My workshops help teachers implement problem-based lessons by helping them experience them from both student and teacher perspective, leading to increase students' success with performance tasks and the Common Core State Standards.

Depth of Knowledge

Problems at higher depth of knowledge levels have the potential to challenge your most talented student yet remain accessible to everyone. I can help teachers develop best practices for implementing them so that students persevere longer towards finding the solution.

Search

Type and hit enter
Q

Subscribe for Updates

Do you like the ideas you're reading? If so, you'll love having the best ones sent to you via email!

Enter your information below and I'II send you a short email each Tuesday about an idea you can use with your students right away.

If you live in the United States, enter your zip code and I'Il use it to let you know about events near you.

First Name

Last Name

Robert Kaplinsky

Lessons

How Many Chip Bags Will There $\mathbf{B e}$?

Search

Type and hit enter
Q

Subscribe for Updates

Do you like the ideas you're reading? If so, you'll love having the best ones sent to you via email!

Enter your information below and I'Il send you a short email each Tuesday about an idea you can use with your students right away.

If you live in the United States, enter your zip code and l'll use it to let you know about events near you.

First Name
How Can We Make Stronger Passwords?

ロ

Action	Do Now	Start Planning	Yes \& No	Don't Do
Incorporate higher DOK problems on assessments		N		
Replace all DOK 1 problems with higher DOK problems				
Share these resources with colleague to make them aware.	V			
Find problems I can integrate on Open Middle.	N			
Use the 3 steps process to strengthen existing problems.				

CHALLENGING PROBLEMS

WORTH SOLVING

ROBERT KAPLINSKY

robert@robertkaplinsky.com

robertkaplinsky.com/addingitup
@robertkaplinsky

