EMPOWERED PROBLEM SOLVING

ROBERT KAPLINSKY

robert@robertkaplinsky.com

robertkaplinsky.com

@robertkaplinsky

RobertKaplinsky.com

DOUBLE-DOUBLE Double Meat & 265 Double Cheese CHEESEBURGER **1**75 X-LG LG HAMBURGER **1**<u>50</u> **FRENCH FRIES** <u>05</u> CEDTEA SHAKES Chocolate Strawberry <u>55</u> 70 70 COFFFF

OPEN 10:30 a.m. to 1:00 a.m. Fri. and Sat. until 1:30 a.m.

2004-10-31	
	8:21 PM
YOUR GUEST NUME	ER IS
IN-N-OUT BURGER LAS VE 2004-10-31 165 1 5 98	GAS EASTERN 8:21 PM
Cashier: SAM GUEST #: 98	
Counter-Eat	In
98 Meat Pty XChz	2.65 88.20
Counter-Eat In TAX 7.50% Amount Due	90.85 6.81 97.66
CASH TENDER Change	\$97.66 \$.00
2004-10-0-	

2004-10-31

the state of the s

Counter-Eat 1dd 1dd 98 Meat Pty XChz Counter-Eat In TAX 7.50% Amount Due CASH TENDER Change 2004-10-31

Cashier: SAM

:

98

GUEST

2.65 88.20

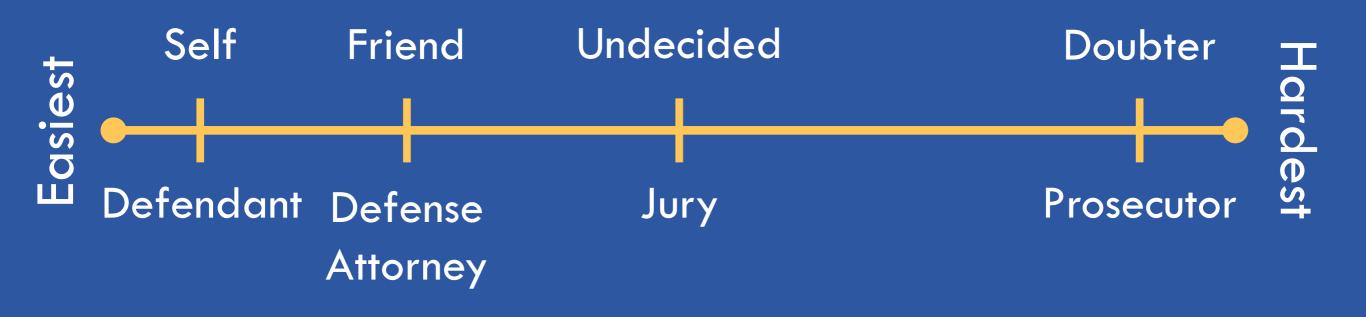
In

90.85 0.81 97,66

\$97.66 \$.00

8:21 PM

	Serving Size (g)	Calories
Hamburger w/Onion	243	390
Cheeseburger w/Onion	268	480
Double-Double w/Onion	330	670



Layers	Cost
1	\$1.75
2	\$2.65
3	\$3.55
4	\$4.45
•	•
•	•
20	\$18.85
•	•
•	•
100	\$90.85
•	
•	•
Ν	\$1.75 + (N-1)*\$0.90

MATH PRACTICES

- 1. Make sense of problems and persevere in solving them.
- 2. Reason abstractly and quantitatively.
- 3. Construct viable arguments and critique the reasoning of others.

LEVELS OF CONVINCING

Construct a viable argument

Critique the reasoning of others

Inspired by Thinking Mathematically by J. Mason, L. Burton, and K. Stacey

RobertKaplinsky.com

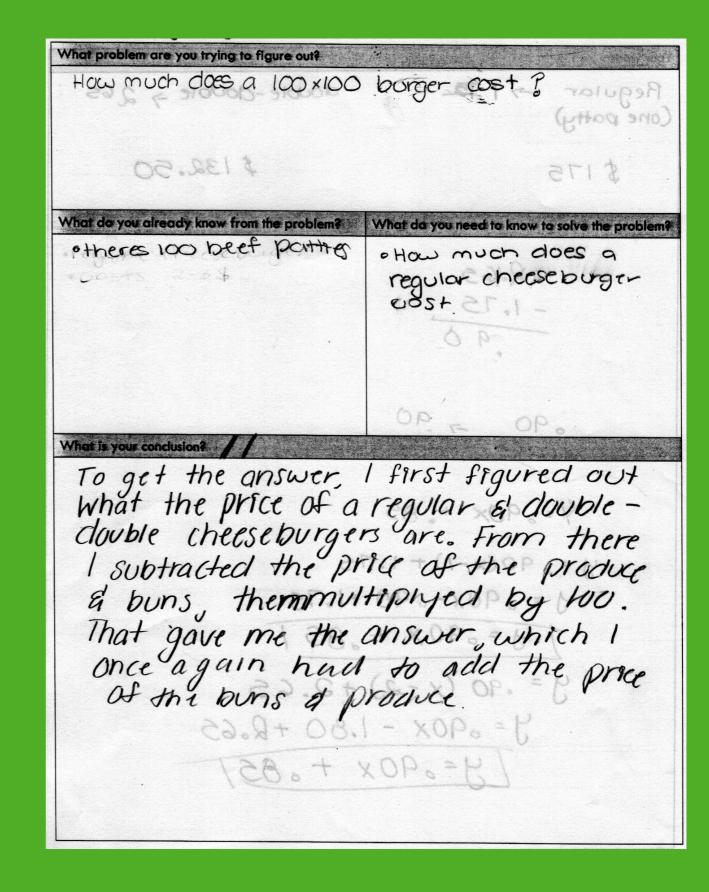
MATH PRACTICES

- 1. Make sense of problems and persevere in solving them.
- 2. Reason abstractly and quantitatively.
- 3. Construct viable arguments and critique the reasoning of others.
- 4. Model with mathematics.
- 5. Use appropriate tools strategically.
- 6. Attend to precision.
- 7. Look for and make use of structure.

bun + produce + meat + cheese + meat + cheese = \$2.65 bun + produce + meat + cheese = \$1.75

meat + cheese = \$0.90

MATH PRACTICES


- 1. Make sense of problems and persevere in solving them.
- 2. Reason abstractly and quantitatively.
- 3. Construct viable arguments and critique the reasoning of others.
- 4. Model with mathematics.
- 5. Use appropriate tools strategically.
- 6. Attend to precision.
- 7. Look for and make use of structure.
- 8. Look for and express regularity in repeated reasoning.

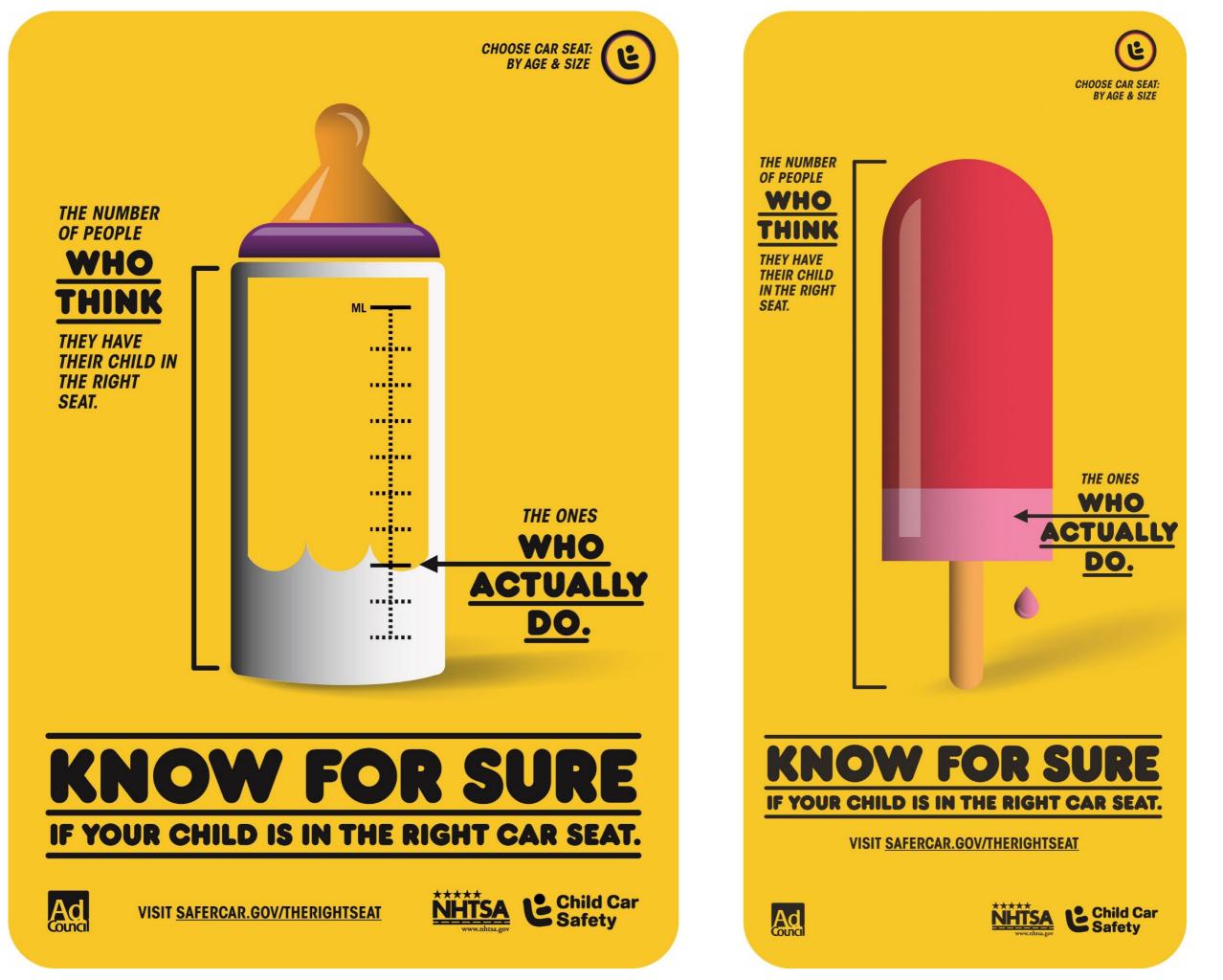
THE REALITY

- Students struggled to find a layer's cost.
- Common wrong answers included:
 - \$175.00 (\$1.75 x 100 cheeseburgers)
 - \$132.50 (\$2.65 x 50 Double-Doubles)
- Some classes were not ready for a 100x100.
- There were equations with more than N patties.
- Students were surprised to see many correct equations.

STUDENT

WORK

The only difference between a double double and a choeseburger is one patty and one slice of cheese. So you subtract the prices of the two to find the price of only one patty & cheese. You then use that number (.90) & subtract it from the price of all the extra stuff. Multiply by 100


What is your conclusion?

2.40 A MAL ION I DUM a 200 meete Jo # =× 229 ct the IN E (I+x) OR What is your conclusion? A 100×100 at In-h-out cost \$90.85. To solve that, you start by subtracting the price of a cheese burger from a double double. The answer (.90) is the price of a patty and cheese slice.

You multiply (.90) by one less patty than what you want. (x-1), and you add the price of a cheese burger (1.75). You end up with the eq. [y=,90 (x-1)+1.75.]. For the 100×100, you plug in 100 to the (x) and you end up with \$90.85. $\begin{aligned} y &= .90(100-1) + 1.75 \\ y &= .90(100-1) + 1.75 \\ y &= .90.85 \end{aligned}$

What is your conclusion?

Figure the price difference from the Double-Double with a cheese burger. Then find out the prize for the produce and cheese-beef. get total into \$ 90.85

There are 125 sheep and 5 dogs in a flock. How old is the shepherd?

RobertKaplinsky.com

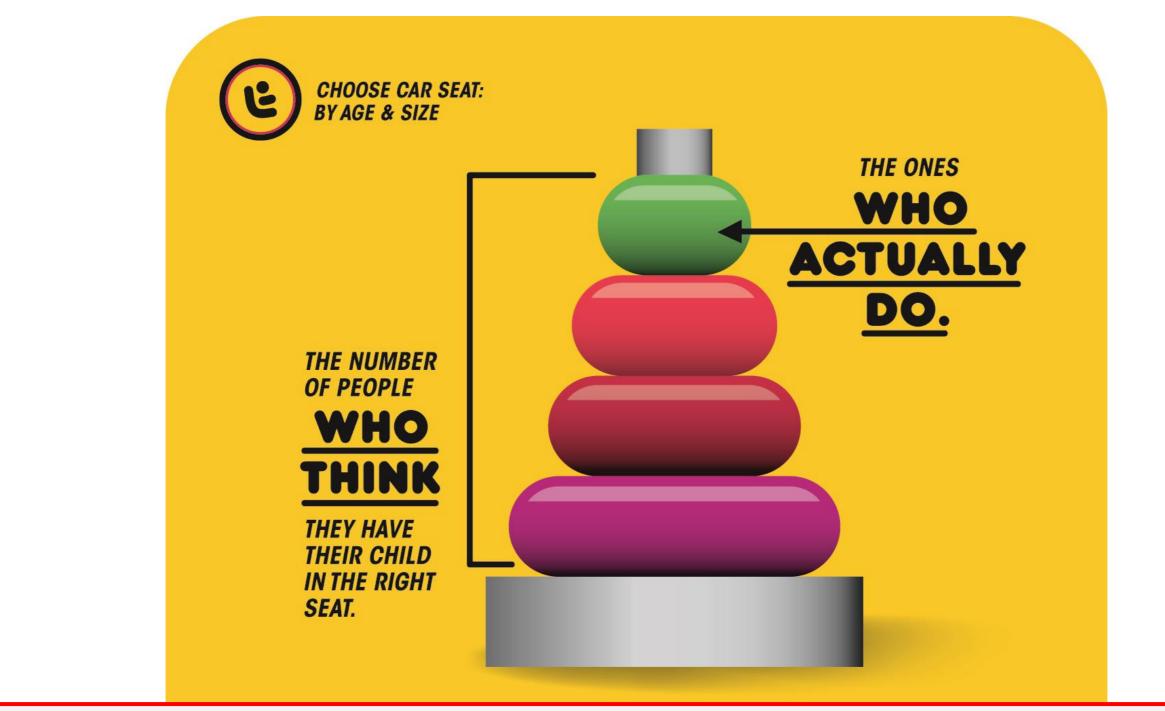
32 STUDENTS

- 75% of them gave me numerical responses
- 2 students calculated the answer to be 130 (125 + 5)
- 2 students calculated the answer to be 120 (125 5)
- 12 students calculated the answer to be 25 (125 ÷ 5)
- 0 students calculated the answer to be 625 (125 x 5)
- 4 students stated that they guessed their answer (90, 5, 42, and 50)
- 4 students tried to divide 125 by 5 but could not correctly implement the procedure

TAKEAWAYS

- Making sense of mathematics
- Intellectual autonomy
 - Intellectual autonomy is about being able to think for yourself and not being dependent on others for the direction and control of one's thinking.

What Does the NHTSA Say?


Key Statistics and Consumer Insights:

• Motor vehicle crashes are the leading cause of death for children age 1 through 12 years old.¹

According to a NHTSA study, 3 out of 4 kids are not as secure in the car as they should be because their car seats are not being used correctly.

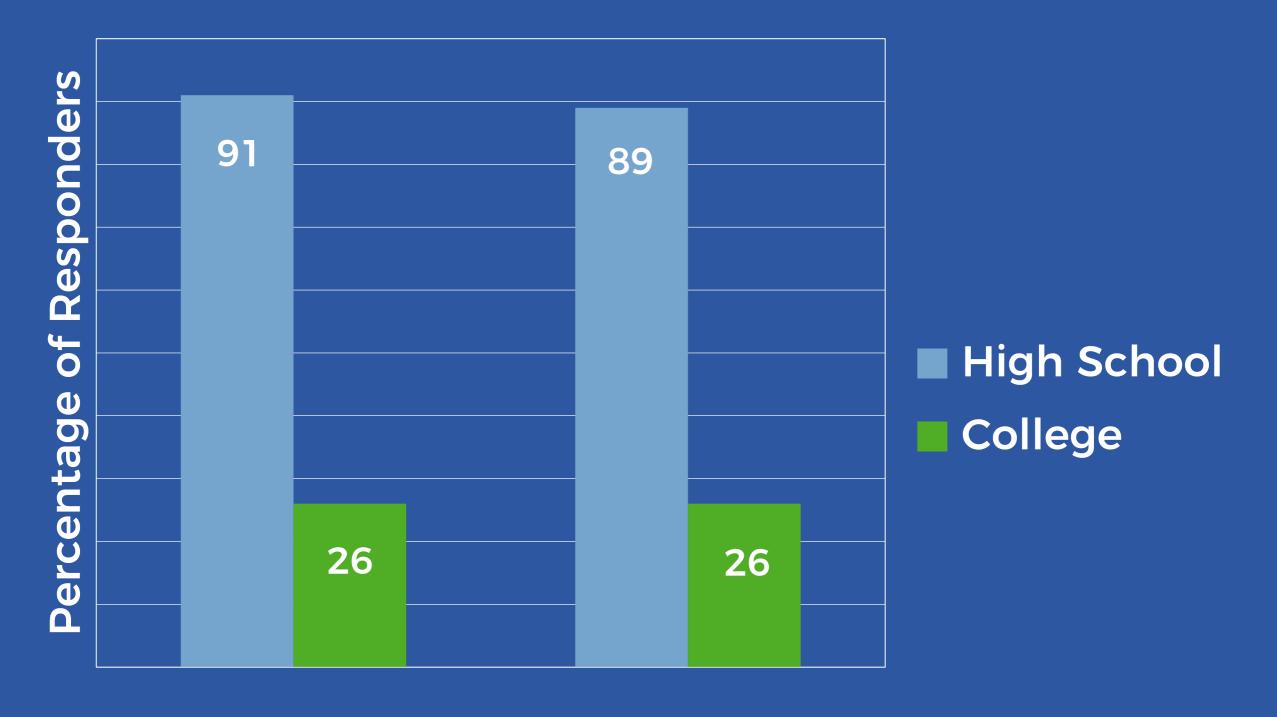
De reduced by about hair if the correct child safety seats were always used.

¹ Source: Based on the latest mortality data currently available from the CDC's National Center for Health Statistics.

- "because they have their child in the right seat"
- "because their car seats are not being used correctly"

IF YOUR CHILD IS IN THE RIGHT CAR SEAT.

VISIT SAFERCAR.GOV/THERIGHTSEAT


Child Car

Safety

PURPOSE OF K-12 ED?

- College readiness
 - ACT National Curriculum Survey
 - Surveyed 9,937 educators
 - What percent of students are "very well" or "well" prepared for college?

2009

2012

Source: act.org/research/policymakers/pdf/NCS-PolicySummary2012.pdf

RobertKaplinsky.com

PURPOSE OF K-12 ED?

- College readiness
- Career readiness
 - Association of American Colleges and Universities survey
 - Surveyed over 300 employers with at least 25 employees and many new hires

Critical thinking and analytical reasoning skills

Analyzing and solving complex problems

Communicating effectively orally and in writing

Applying knowledge and skills to real-world setting

Working w/ numbers and understanding statistics

Source: aacu.org/leap/documents/2013_EmployerSurvey.pdf

RobertKaplinsky.com

More Less Same

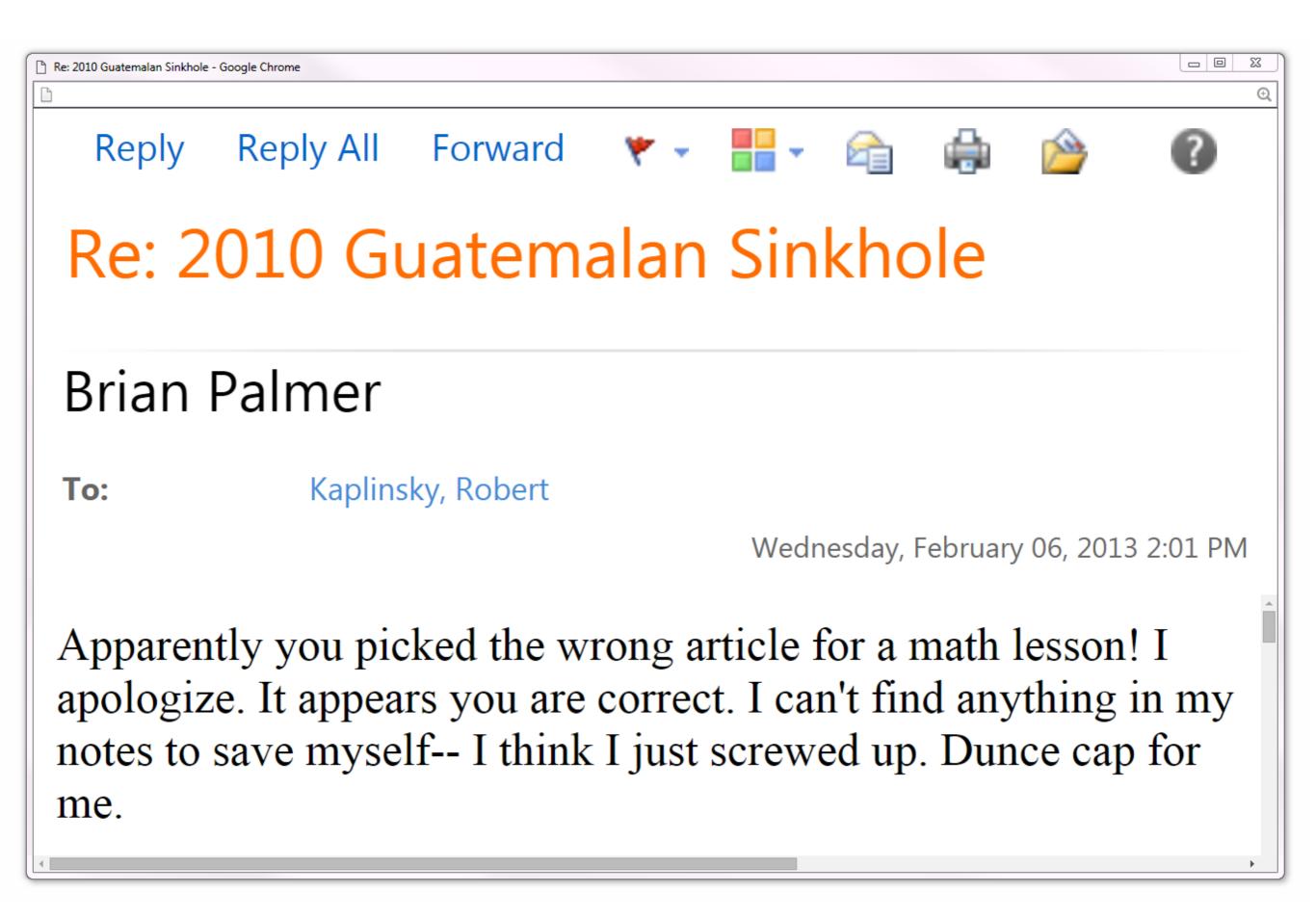
SINKHOLE DIMENSIONS

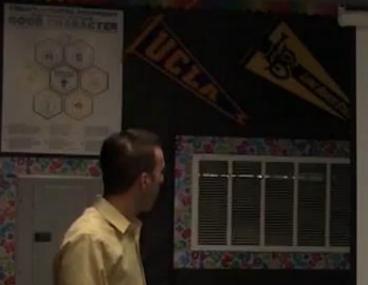

- Slate Magazine
 - "A sinkhole, 65 feet across and 100 feet deep"

How To Fix a Giant Sinkhole

The cement method vs. the graded-filter technique.

By Brian Palmer

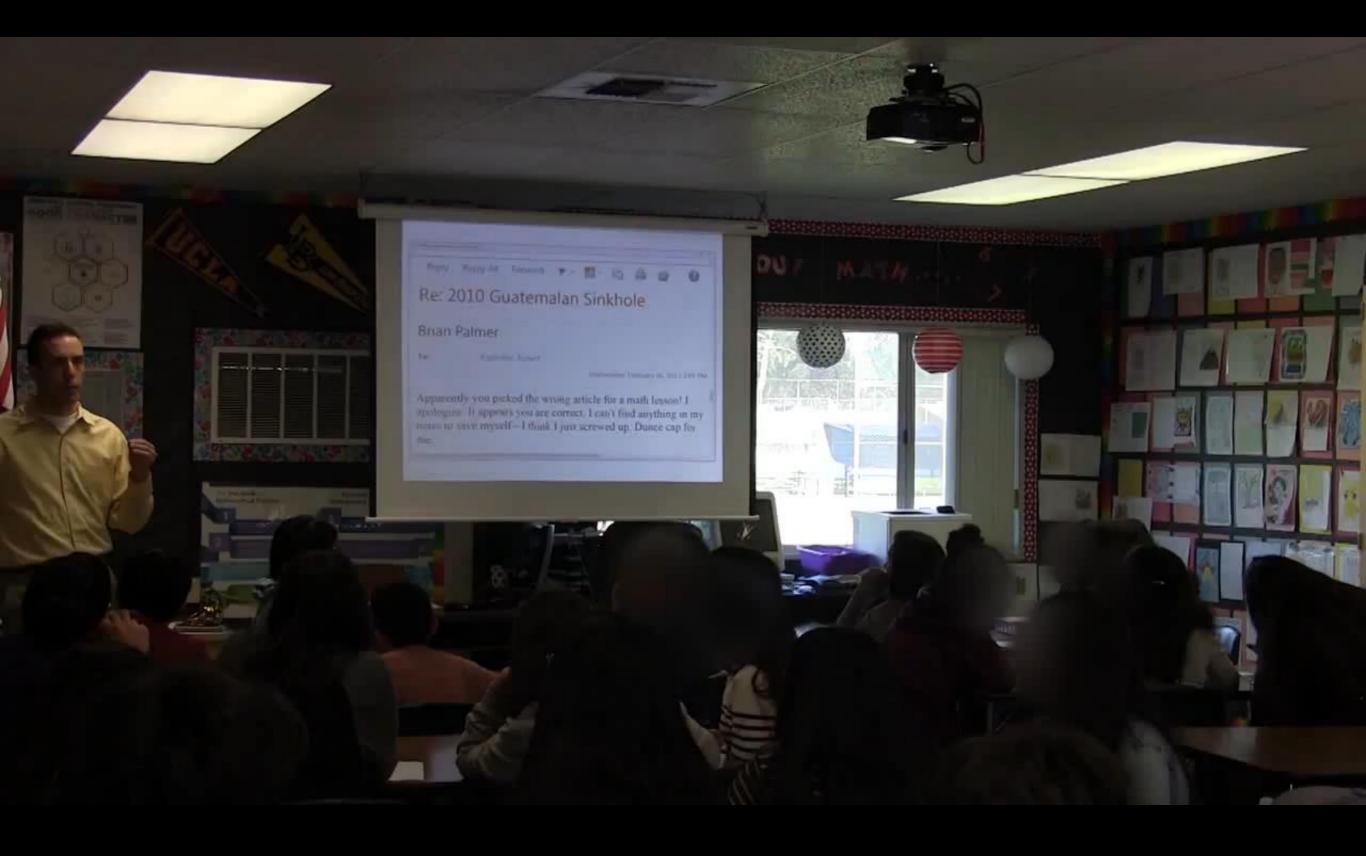



It's not clear whether cement is the best option, however. A 6,500-cubic-foot wad of concrete may serve to concentrate water runoff in other areas, leading to more sinkholes. Many engineers prefer the **graded-filter technique**, in which the hole is filled with a layer of boulders, then a layer of smaller rocks, and, finally, a layer of gravel. This fills the hole, more or less, while permitting water to drain through the area.

18

_ O X

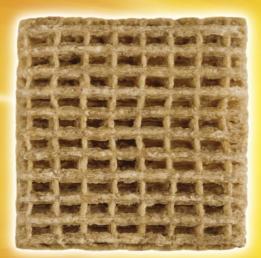
6										Œ
Reply 2010			Sinkho			×	-	*	*	?
Kaplin	isky, Ro	bert								
То:								We	dnesday, Februar	ry 06, 2013 1:39 PM
Hi Brian,	,									
I am using your "How to Fix a Giant Sinkhole" article for a math lesson on volume of a cylinder. I have one question for you. You mentioned.										
"It's not clear whether cement is the best option, however. A 6,500-cubic-foot wad of concrete may serve to concentrate water runoff in other areas, leading to more sinkholes."										
	•		e you got 65 cubic feet.	500 cubic	eet fro	om?	Did you	u do 6	65 x 100? V	Ve get
Thanks, Robert										



Sinkhole Dimensions

viational Geographic "60 feet (18 meters) wide and about 30 stories deep" Dru

- Time Magazine: "runs some 200 ft. deep"
- CNIN: "The 20-meter (about 66 feet) diameter sinkhole is about 30 meters (about 100 feet) deep."
- Slate: "A sinkhole, 65 Feet across and 100 Feet deep"


STUDENT REFLECTIONS

- "I didn't say his answer was wrong since he is supposed to know more than an average 8th grader."
- "Even though Brian was wrong, no one corrected him, because of fear of being wrong and lack of confidence in ourselves."

STUDENT REFLECTIONS

- "I didn't say anything when we were shown the 'right' answer because I thought that it must be right because he's the author, but I knew in my mind he was actually wrong."
- "I think that I should be the one who argues for my opinion, not just listening to others and accepting that my answer is wrong all the time."

OLD

(Boring)

NEM Diamond Di

NEW (Exciting!)

"Kraft Foods saw an immediate 18% increase in baseline sales of Shreddies within the first month alone, and for months thereafter."

Source: http://www.visualtargeting.com/diamondshreddies.html

Complicated or Complex?

Gookie Monster Gupcakes

- Using an electric mixer, whip the butter until it is pale. This will take at least 5 minutes on high.
- 2. Gradually add in the icing mixture and vanilla until well combined.
- 3. With the mixer running, add in food colouring until you get to the Cookie Monster colour. This may be a lot if you are using liquid food colouring or a little if using gel food colouring.
- 4. Add in the milk and mix until the frosting puffs up.
- 5. Fill a piping bag with a fluted nozzle and pipe on icing.
- 6. With the writing icing, place black spots on the marshmallows for pupils.
- 7. Place on each cupcake.
- 8. Cut cookies in half and place in 'mouth'.

roblem solving strategy Circle the (#s -Underline the ques. http://www.teachingwithsimplicity.com/math-anchor-charts

 Content Objective Example
 SWBAT apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. (MP4)

Co

0

0

0

0

O

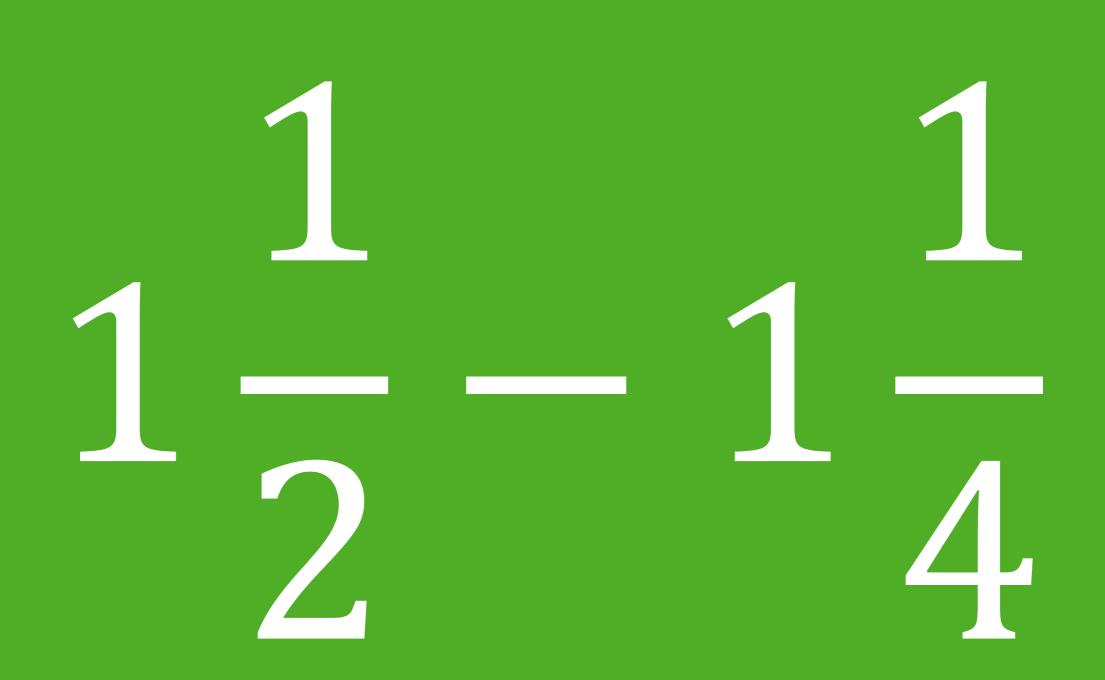
0

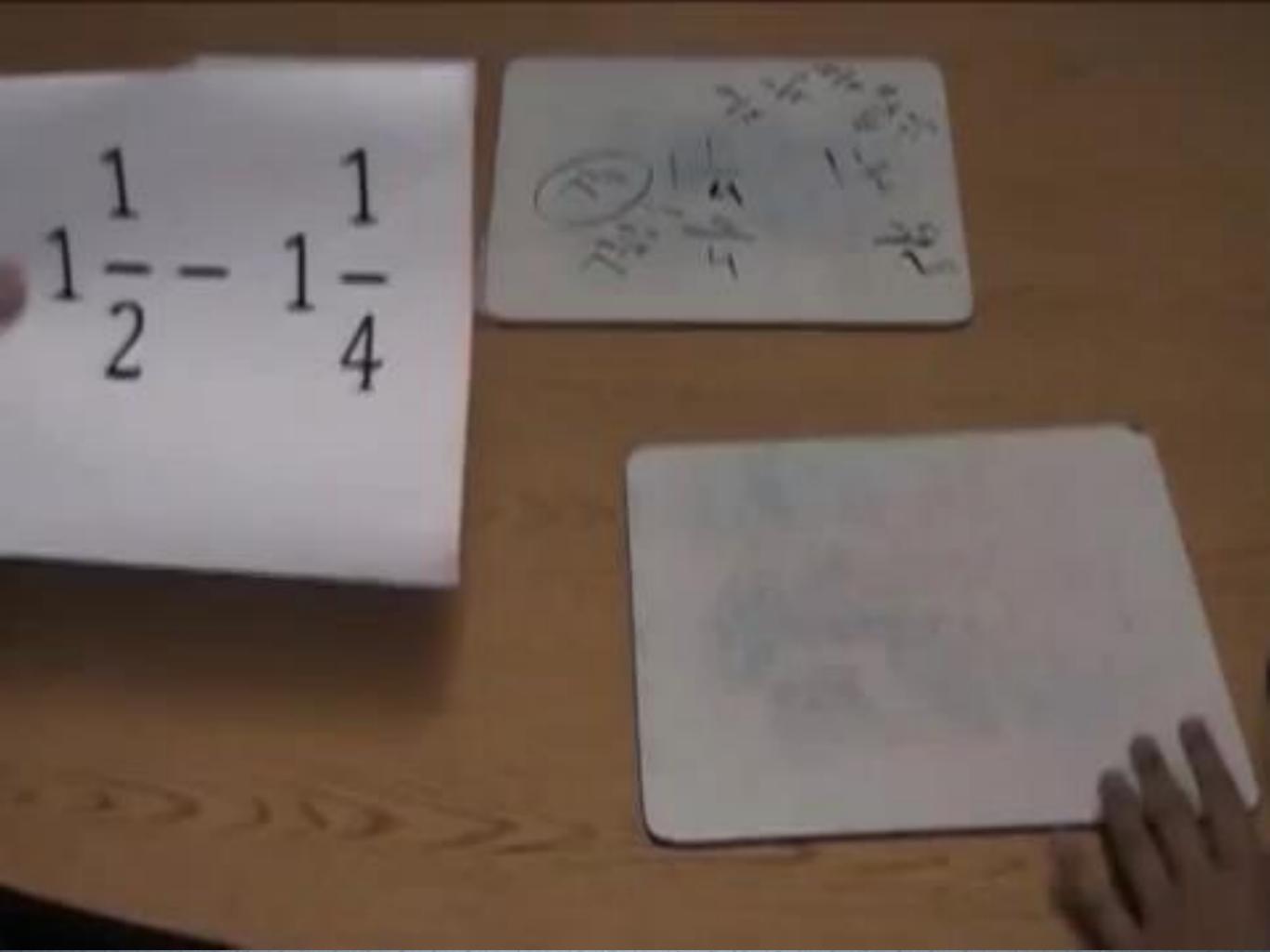
0

 Language Objective Example
 SWBAT explain correspondences between equations, verbal descriptions, tables, and graphs. (MP1)

In early grades, this might be as simple as writing an addition equation to describe a situation. (MP4)

- In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. (MP4)
- By high school, a student might use geometry to solve a design problem or use a function to describe how one


WHAT'S IT LOOK LIKE...


- when students have procedural skill but not conceptual understanding or the ability to apply mathematics?
- when students <u>can</u> work with numbers but <u>cannot</u>:
 - critically think
 - applying knowledge and skills to real-world settings
 - analyze and solve complex problems

How far apart are the exits on this freeway: Jct 90 and Jefferson Blvd?

THE FOUR C's Communication Curiosity

6.G.4 - Represent threedimensional figures using nets made up of rectangles and triangles, and use the nets to find the surface area of these figures. 7.G.6 - Solve real-world and mathematical problems involving area, volume and surface area.

8.G.3 Describe the effect of dilations, translations, 15 rotations, and reflections on two-dimensional figures using coordinates. G-CO.6 Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure.

 A-CED.1 - Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions. F-IF.7a - Graph linear and quadratic functions and show intercepts, maxima, and minima.

6.RP.2 - Understand the concept of a unit rate

Product

SALTED

PEANUTS IN MESH BAG

20 OZ

59

SI

Fresh Roasted

h41

Salted

odact of 154

THE FOUR C's Communication Curiosity Critical Thinking

PROBLEM SOLVING FRAMEWORK

Inspired by Geoff Krall's resources at emergentmath.com

What problem are you trying to figure out?	What estimates do you have?							
	↓							
	low high							
What info do you already know about the problem?	Place your estimate on the number line. What info do you need about the problem?							
What is your conclusion? How did you reach that conclusion?								

THE FOUR C's Communication • Curiosity Critical Thinking Content Knowledge

QUESTIONING SCENARIOS

- The activity begins with teachers in groups of three taking the roles of teacher, student, or observer.
- The individuals playing the role of teacher and student each receive a slip of paper describing their scenario.
- The individual playing the role of observer waits to record all of the teacher's questions to the student.
- Once the activity begins, the teacher will talk to the student in the context of the scenario they read about on the slips of paper.

What did you get for the area of a square with a side length of 4 units?

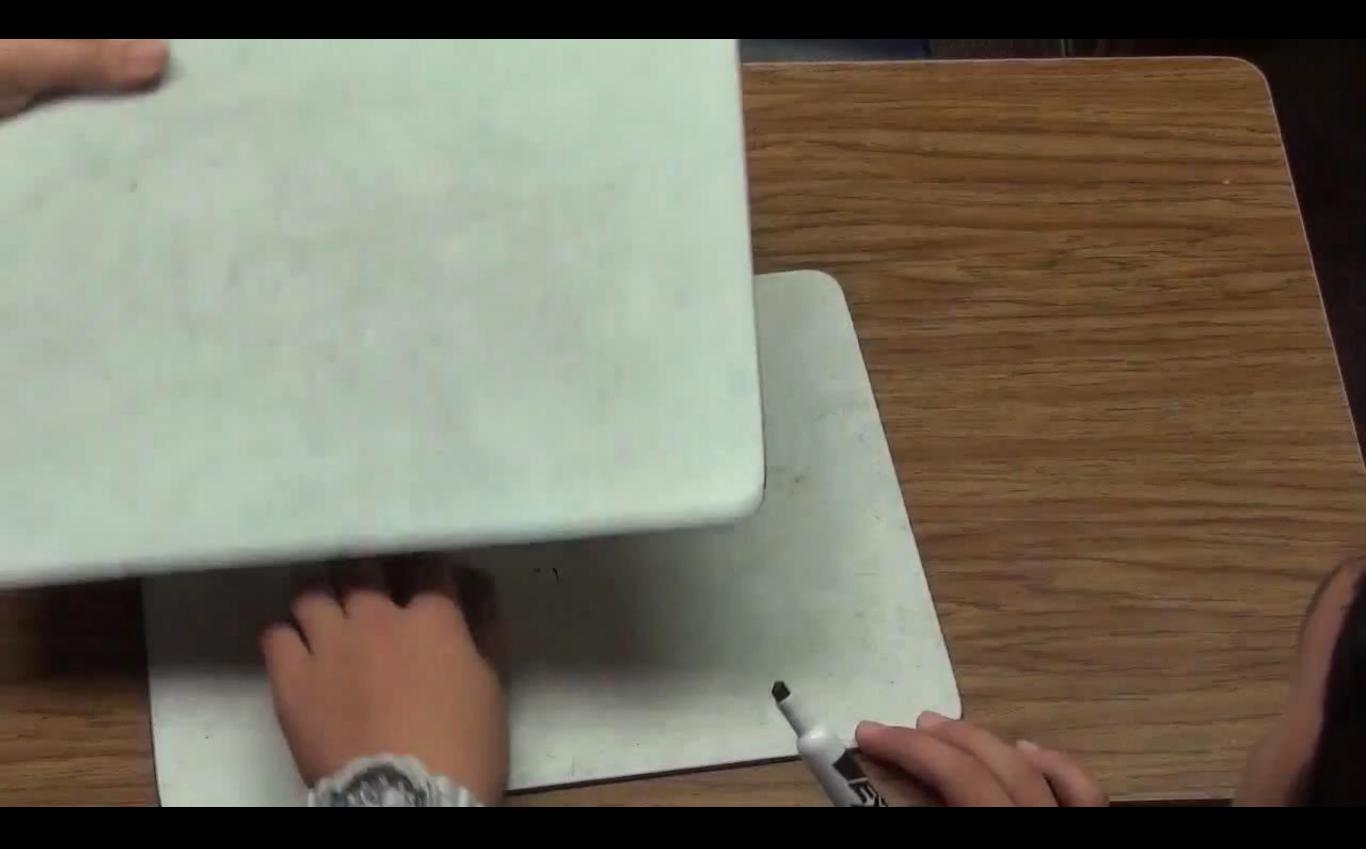
Great. Do you have any questions?

What did you get for the area of a square with a side length of 4 units?

16

Great. How did you get your answer?

Each side is 4 so I added 4 together 4 times and got 16.


CCSS.MATH.CONTENT.4.MD.A.3 mand of Apply the area and perimeter formulas for harder or rectangles in real world and mathematical problems. meet the equal intensity, ti of each grade: conceptua skills and fluency, and application.

Source: http://www.corestandards.org/other-resources/key-shifts-in-mathematics/

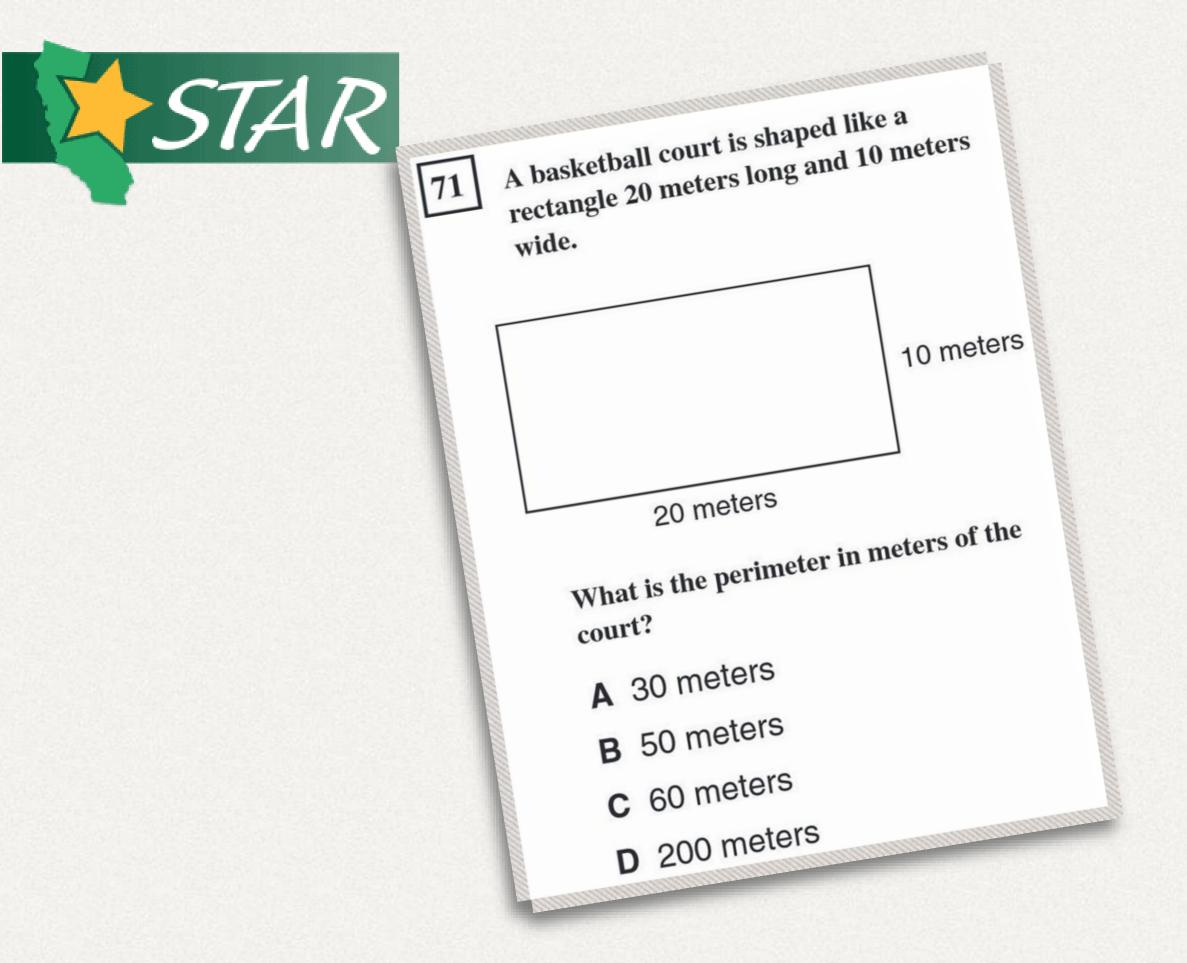
What is the perimeter of a rectangle that measures 8 units by 4 units?

COMPONENTS OF RIGOR Procedural Skill and Fluency **Conceptual** Understanding

List the dimensions of a rectangle with a perimeter of 24 units.

COMPONENTS OF RIGOR Procedural Skill and Fluency

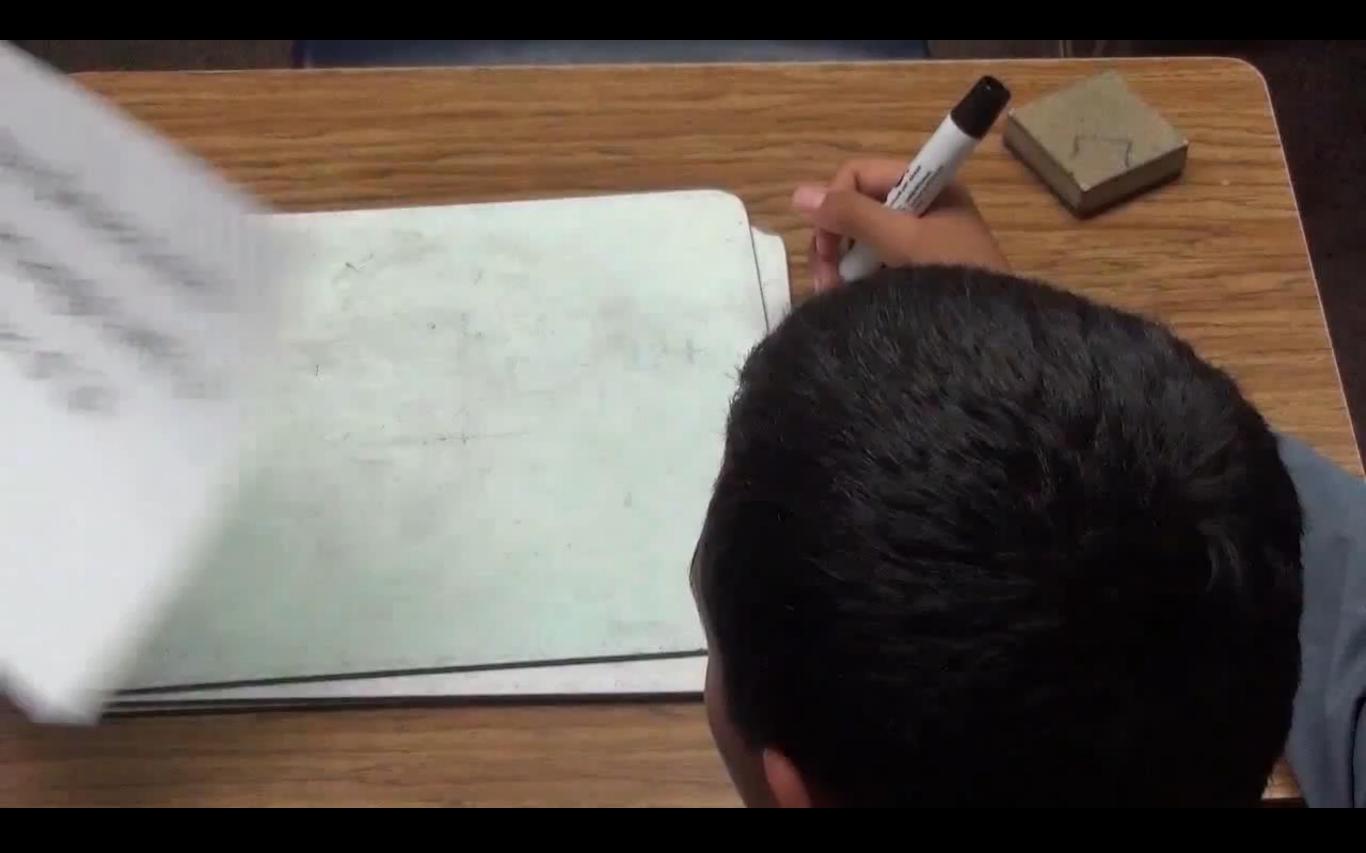
Conceptual Understanding



COMPONENTS OF RIGOR Procedural Skill and Fluency **Conceptual** Understanding

List the of a rectangle with a perimeter of 24 units.

COMPONENTS OF RIGOR Procedural Skill and Fluency


Conceptual Understanding

Source: http://www.cde.ca.gov/ta/tg/sr/documents/cstrtqmath3.pdf

What is the perimeter of a rectangle **Mathematics** that measures 8 units by 4 units?

COMPONENTS OF RIGOR Procedural Skill and Fluency **Conceptual** Understanding

COMPONENTS OF RIGOR Procedural Skill and Fluency **Conceptual** Understanding

Of all the rectangles with a perimeter of 24 units, which one has the most area?

00:00:00:00 Of all the rectangles with a perimeter of 24 units, which one has the mast area?

COMPONENTS OF RIGOR Procedural Skill and Fluency

Conceptual Understanding

DEFINING THE PROBLEM

- Students appear to demonstrate "deep, authentic command of mathematical concepts" when given commonly used problems.
- However with more challenging problems, the same students seem to no longer demonstrate that command.

ADDRESSING THE PROBLEM

- First, we must have a clear understanding about why these problems are different from one another.
- Next, we need to practice using these problems so that we understand how students may react to them.
- Last, we need a source that can provide us with a variety of free problems.

Depth of Knowledge Matrix - Elementary & Secondary Math

			-		
Topic	Adding Whole Numbers	Money	Fractions on a Number Line	Area and Perimeter	Subtracting Mixed Numbers
CCSS	 1.NBT.4 	 2.MD.8 	 3.NF.2 	 3.MD.8 	 5.NF.1
Standard(s)	 2.NBT.5 			• 4.MD.3	
DOK 1	Find the sum.	If you have 2	Which point is located at $\frac{7}{12}$	Find the perimeter	Find the difference.
Example		dimes and 3	below?	of a rectangle that	
	44 + 27 =	pennies, how	L M NO	measures 4 units	1 2
		many cents	<	by 8 units.	$5\frac{1}{2}-4\frac{2}{3}=$
		do you have?	$0 \frac{1}{2} 1$		23
DOK 2	Fill in the boxes below	Make 47¢ in	Label the point where $\frac{3}{4}$	List the	Create three different mixed
Example	using the whole	three	belongs on the number line	measurements of	numbers that will make the
	numbers 1 through 9,	different	below. Be as precise as	three different	equation true by using the whole
	no more than one time	ways with	possible.	rectangles that	numbers 1 through 9, no more
	each, so that you make	either		each has a	than one time each. You may
	a true equation.	quarters,		perimeter of 20	reuse the same whole numbers
		dimes,	<++>	units.	for each of the three mixed
	+ 53 =	nickels, or			numbers.
	Lanna Lanna Lanna	pennies.	3		_ 4 1
					$5\frac{4}{5} - 3\frac{1}{20}$
					5 20
DOK 3	Make the largest sum	Make 47¢	Create 5 fractions using the	What is the	Make the smallest difference by
Example	by filling in the boxes	using exactly	whole numbers 0 through 9,	greatest area you	filling in the boxes below using
	below using the whole	6 coins with	exactly one time each as	can make with a	the whole numbers 1 through 9,
	numbers 1 through 9,	either	numerators and denominators,	rectangle that has a	no more than one time each.
	no more than one time	quarters,	and place them all on a	perimeter of 24	
	each.	dimes,	number line.	units?	•••••
		nickels, or			
	+ =	pennies.			•••••

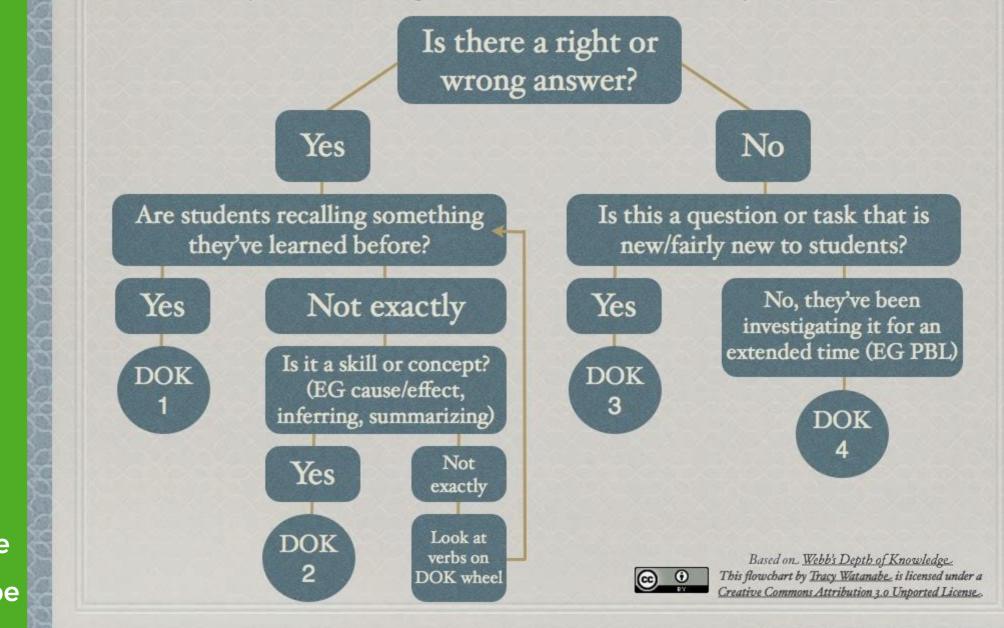
Depth of Knowledge Matrix - Elementary & Secondary Math

_								
Topic	Surface Area and	Probability	Transformations	Factoring	Quadratics in Vertex			
	Volume			Quadratics	Form			
CCSS	• 6.G.4	• 7.SP.5	• 8.G.1	 A-SSE.3a 	• F-IF.7a			
Standard(s)	• 7.G.6	• 7.SP.7	• G-CO.5					
DOK 1	Find the surface	What is the probability of	Rotate the image below 90°	Find the factors:	Find the roots and			
Example	area of a	rolling a sum of 5 using	counterclockwise about point D	-	maximum of the			
	rectangular prism	two 6-sided dice?	and reflect it	$2x^2 + 7x + 3$	quadratic equation			
	that measures 3		across a 🛛 🔍 🔀		below.			
	units by 4 units by		horizontal line.					
	5 units.				$y = -3(x-4)^2 - 3$			
DOK 2	List the	What value(s) have a	List three sequences of	Find three different	Create three			
Example	measurements of	1/12 probability of being	transformations that take pre-	integers to put in	equations for			
	three different	rolled as the sum of two	image	the blank that will	quadratics in vertex			
	rectangular prisms	6-sided dice?	ABCD to	make the quadratic	form that have roots			
	that each have a		image	expression	at 3 and 5 but have			
	surface area of 20		A'B'C'D'.	factorable.	different maximum			
	square units.		Ďr Pre∹image image		and/or minimum			
				$x^2 + _x + 4$	values.			
DOK 3	What is the	Fill in the blanks to	What is the fewest number of	Fill the blank by	Create a quadratic			
Example	greatest volume	complete this sentence	transformations needed to take	finding the largest	equation with the			
	you can make with	using the whole numbers	pre-image ABCD to image A'B'C'D'?	and smallest	largest maximum			
	a rectangular	1 through 9, no more	B	integers that will	value using the			
	prism that has a	than one time each.	Â	make the quadratic	whole numbers 1			
	surface area of 20			expression	through 9, no more			
	square units?	Rolling a sum of on		factorable.	than one time each.			
		twosided dice is the						
		same probability as rolling	с в	$2x^2 + 3x + _$	$y = - [(x - [])^2 + []$			
		a sum of on two	Pre-Image Image					
		sided dice.						
- Robert								

More free DOK 2 & 3 problems available at openmiddle.com

© 2017 Robert Kaplinsky, robertkaplinsky.com

Complex or Complicated?


DOK VERB WHEEL

Source: Unknown

DOK FLOWCHART

Depth of Knowledge (DOK) Flowchart for Questions

Source: Tracy Watanabe @tracywatanabe

DOK POSTERS

Source: Penny Lund isntitelementary.blogspot.com/

RobertKaplinsky.com

 Apply information from one text to another to develop an persuasive argument.

design connect prove analyze critique synthesize create apply concepts

Created by Penny Lund 2013

compare construct

hypothesize

revise

develop a logical argument

investigate

229228

apprise

critique

draw conclusions

DOK LEVEL DIFFERENCES

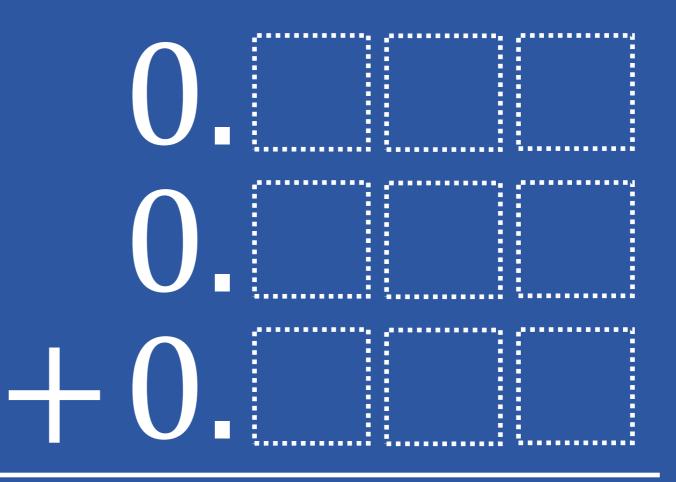
Level 1: Recall & Reproduction

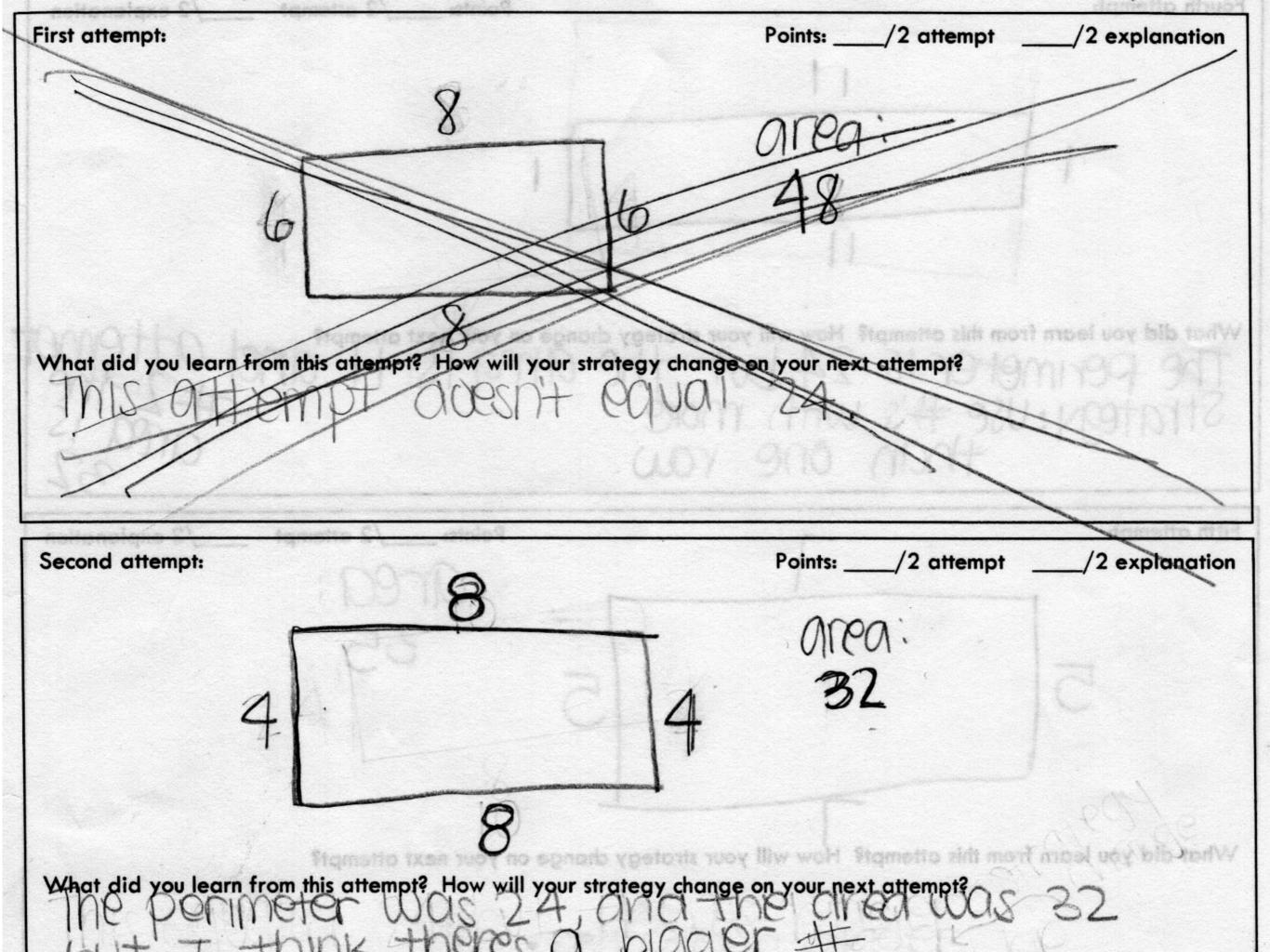
- Often a trivial application of facts.
- Generally requires little effort beyond remembering a formula.
- Usually only one answer.

Level 2: Skills & Concepts

- Usually requires more than one step to solve.
- Often multiple answers.

Level 3: Strategic Thinking


- Usually requires critical thinking about how to approach a problem.
- May be multiple answers or a single optimal answer.
- Often challenging enough to make your head hurt.


Level 4: Extended Thinking

 These are generally represented by performance tasks or problembased lessons.

ADDING DECIMALS

Use the numbers 1 through 9, exactly one time each, to fill in the boxes and make three decimals whose sum is as close to 1 as possible.

Fourth attempt: Points: /2 explanation /2 attempt tomatio St notionalaxe S\ 10110110 21 What did you learn from this attempt? How will your strategy change on your next attempt? The perimeter is 24, but the alreg is it and Strategy: use #'s with more than one row. Fifth attempt: Points: ____/2 attempt /2 explanation ris /2 offengt /2 explorention Second attempt What did you learn from this attempt? How will your strategy change on your next attempt? What did you learn from this oftempt? How will your strategy change on your next atten

DOK FAQ

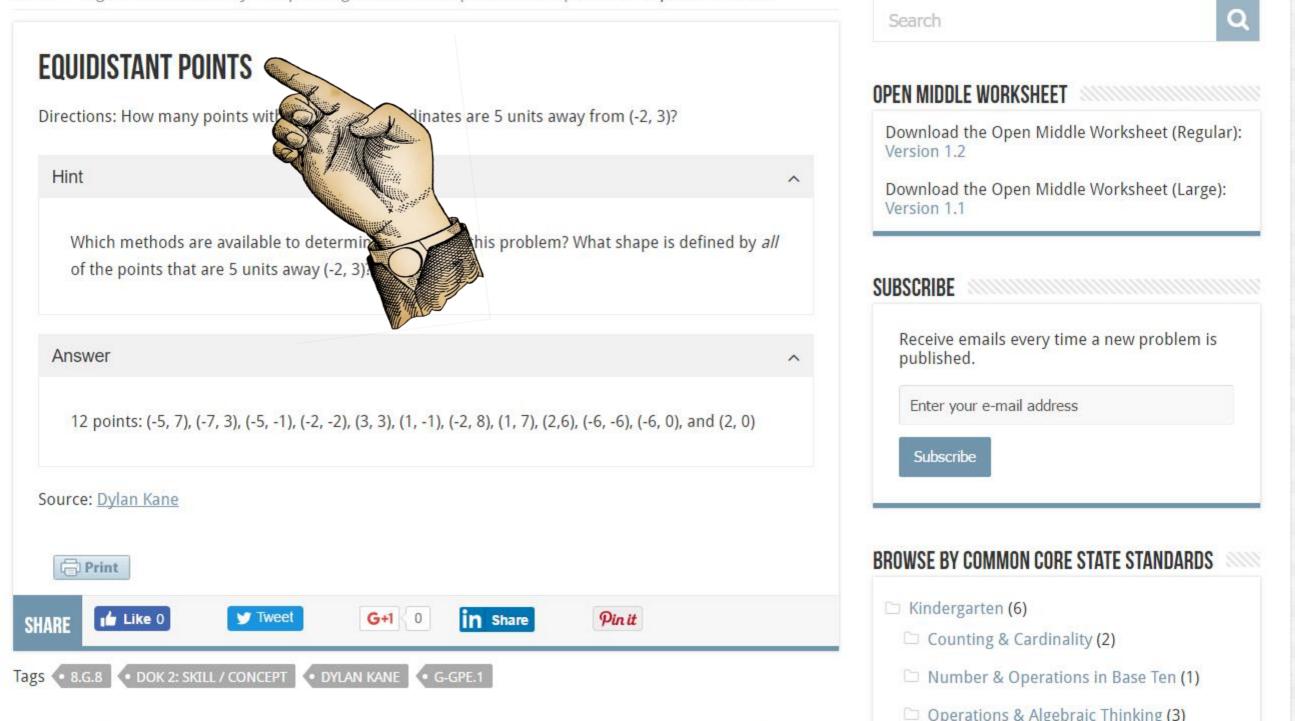
- When will students ever use this?
- What DOK level should I start students with?
- How do teachers fit these problems in?
- How do I help prevent students from giving up after trying the problem once or twice?
- Where can I find other DOK 2 and DOK 3 problems or submit ones I've made?

Open Middle

Challenging math problems worth solving

Have you checked out openmiddle.com @openmiddle Should

ome	Kinder 🛨	Grade 1 🔫	Grade 2 🔫	Grade 3 🔫	Grade 4 🔫	Grade 5 🔫	Grade 6 🔫	Grade 7 -	Grade 8 🔫	High School 🛨	About	Submit
'HE T(DP 10 M03		LEMS OF	2016					Searc	:h		Q
2. C 3. D 4. R 5. C 6. N 7. E	ne Solution, Iultiplying a xponents an	rations nting by D Irrational Nur No Solutions Two-Digit Nur d Order of O	mbers by Brya s, Infinite Solu mber by a Sin perations by 2	itions by Brya ngle-Digit Num Zack Miller	r from Michae n Anderson nber by Rober	l Fenton and			Down Versio Down Versio	load the Open Mie in 1.1	dle Work	ksheet (Large):
9. Iı 10.	nterpretting Two-Step Eq	Percentages uations 3 by	ons and Decir by Robert Kap Erick Lee BOUT OPEN N	olinsky					publ Ent Su	lished. ter your e-mail addr ıbscribe	ess	
	🎸 Bria	an Marks ummymath				Follow			C Kin	E BY CUMMUN CU ndergarten (6) Counting & Cardir Number & Operat	nality (2)	STANDARDS


Operations & Algebraic Thinking (3)


Open Middle

Challenging math problems worth solving

Home	Kinder 👻	Grade 1 -	Grade 2 🔫	Grade 3 🔫	Grade 4 🔫	Grade 5 🔫	Grade 6 🔫	Grade 7 -	Grade 8 🔻	High School 👻	About	Submit	
------	----------	----------------------	-----------	-----------	-----------	-----------	-----------	----------------------	-----------	---------------	-------	--------	--

Home > High School: Geometry > Expressing Geometric Properties with Equations > Equidistant Points

PBL RESOURCES

- Problem-based lesson search engine: robertkaplinsky.com/prbl-search-engine
- My lessons (Elementary, Middle, and High School) robertkaplinsky.com/lessons
- Dan Meyer (Middle and High School) threeacts.mrmeyer.com
- Andrew Stadel (Elementary and Middle School) www.estimation180.com/lessons.html
- Graham Fletcher (Elementary and Middle School) gfletchy.com/3-act-lessons

Robert Kaplinsky

Home

Home Lessons Blog Resources Speaking About Contact

Search

Type and hit enter ...

Q

How Big Is The World's Largest Deliverable Pizza? (Area of Rectangles)

How I Can Help You

My workshops help teachers implement <u>problem-based</u> <u>lessons</u> by helping them experience them from both student and teacher perspective, leading to increase students' success with performance tasks and the <u>Common Core State Standards</u>.

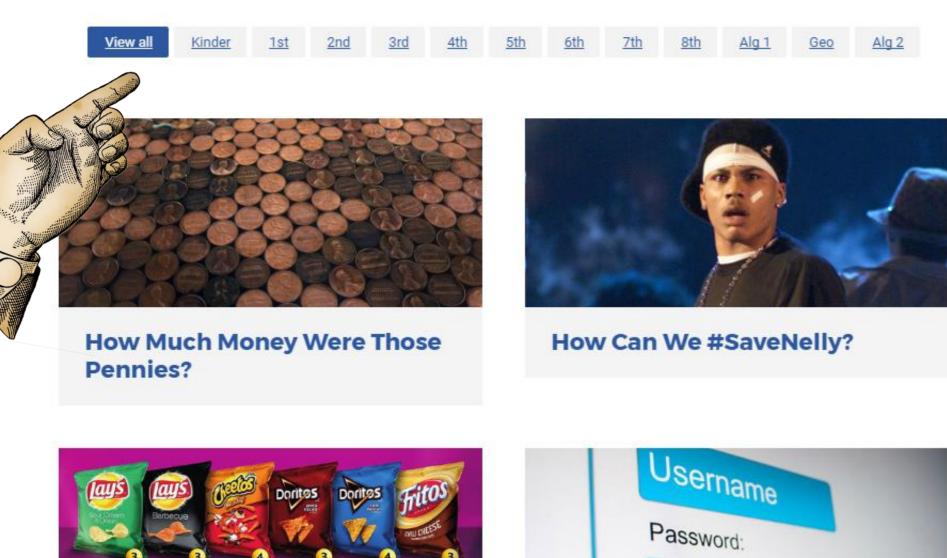
Problems at higher <u>depth of knowledge</u> levels have the potential to challenge your most talented student yet remain accessible to everyone. I can help teachers develop best practices for implementing them so that students persevere longer towards finding the solution.

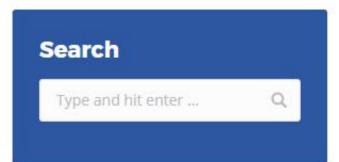
Subscribe for Updates

Do you like the ideas you're reading? If so, you'll love having the best ones sent to you via email!

Enter your information below and I'll send you a short email each Tuesday about an idea you can use with your students right away.

If you live in the United States, enter your zip code and I'll use it to let you know about events near you.


First Name


Last Name

Home Lessons Blog Resources Speaking About Contact

Lessons

Subscribe for Updates

Do you like the ideas you're reading? If so, you'll love having the best ones sent to you via email!

Enter your information below and I'll send you a short email each Tuesday about an idea you can use with your students right away.

If you live in the United States, enter your zip code and I'll use it to let you know about events near you.

First Name

Last Name

How Many Chip Bags Will There Be?

Flavor Mix 20

......

Login

\blacksquare

Robert Kaplinsky's Problem-Based Lessons 🛛 ☆ 🖿

File Edit View Insert Format Data Tools Add-ons Help All changes saved in Drive

D

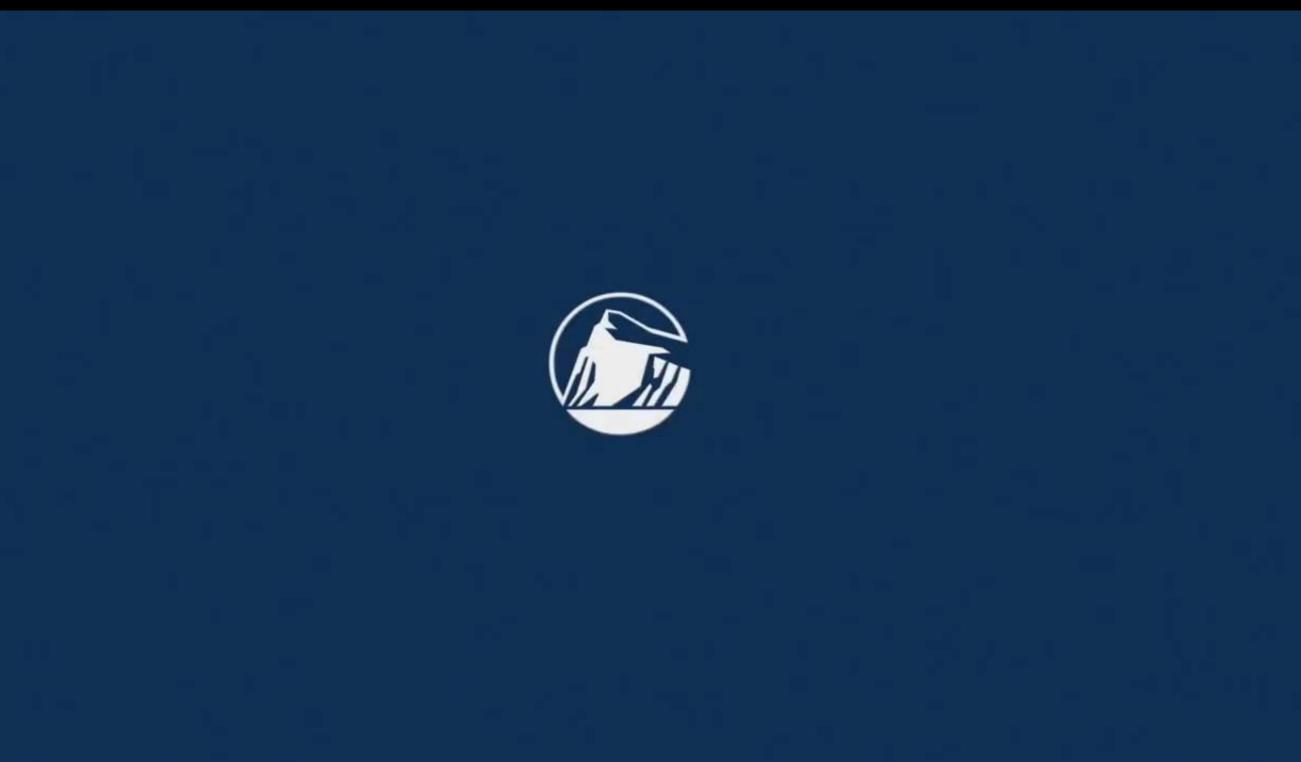
С

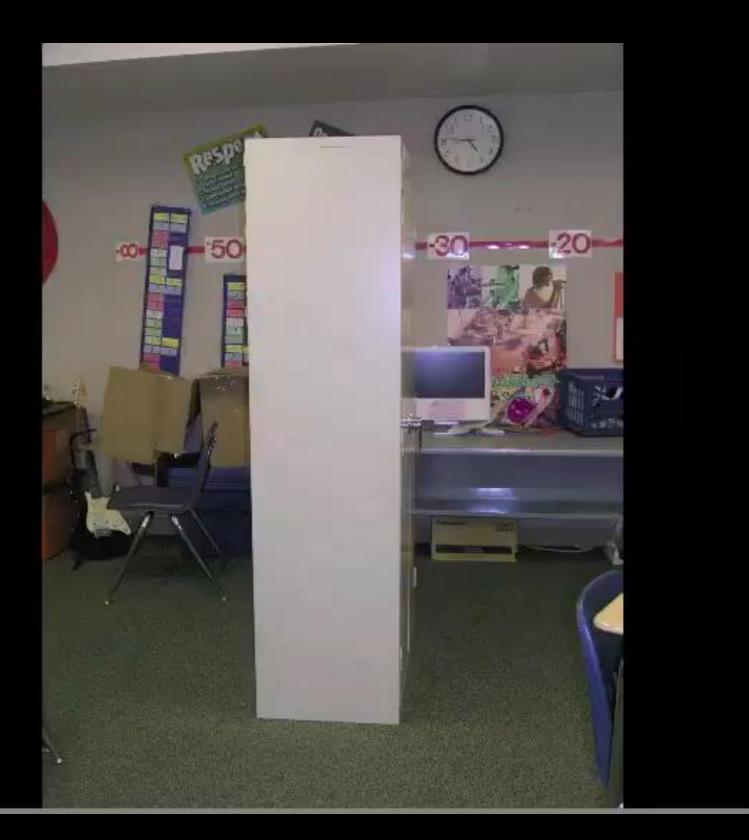
🖶 🖛 🛥 📮 💲 % .000_ 123	- Arial - 12	B Z -5 <u>A</u> - ∰ - ⊞ - ⊡€ -	重 - ↓ - -,
-----------------------	--------------	--------------------------------	-------------

	$\overline{a} \sim \alpha \overline{a}$	\$ %	.0 <u>,</u> .0 <u>0</u> 123 -	Arial -	12 -	в	I	5 A -	≫ - ⊞ - €€ -	≣ - ⊥ -) -
fx										
			А						В	

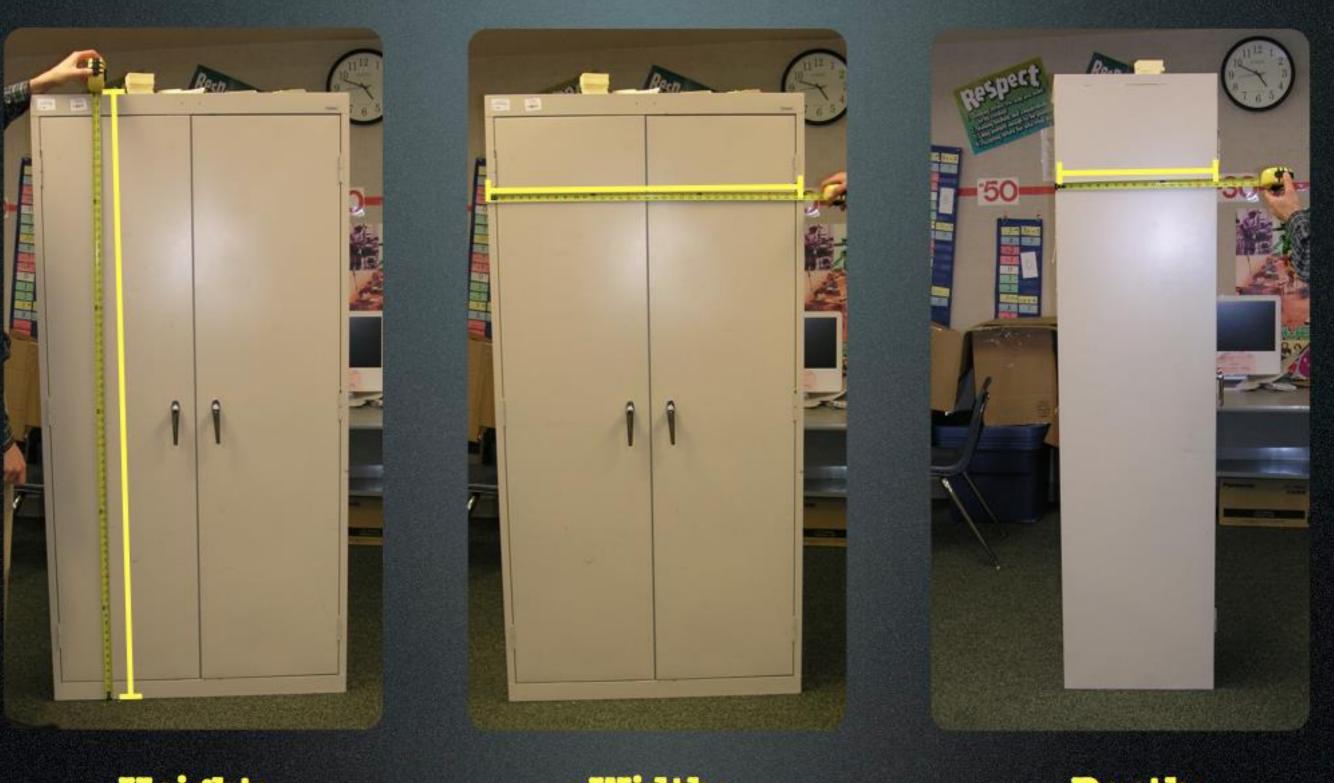
1	Lesson	Concept / Skill	Standard 1	Standard 2	00 00
2	How Much Money Were Those Pennies?	Money, Multiplying Decimals, Proportions	4.MD.2	5.NBT.5	5
3	How Can We #SaveNelly?	Dividing Decimals	6.NS.3		
4	How Many Chip Bags Will There Be?	Ratio and Proportions, Population Sampling	6.RP.3	6.RP.3c	7
5	How Can We Make Stronger Passwords?	Permutations, Combinations, Probability, Exponents, Exponential Growth	7.SP.8	8.EE.1	5
6	How Many Hot Dogs And Buns Should He Buy?	Least Common Multiple (LCM)	6.NS.4		
7	What Does 2000 Calories Look Like?	Unit Rates, Ratios, Solving Equations, and Solving Inequalities	6.EE.3	6.EE.4	6
8	How Much Money Are The Coins Worth?	Decimal Operations and Coin Counting	2.MD.8	5.NBT.7	6
9	How Many Times Will A Case of Paper Jam?	Interpreting Percentages	6.RP.3c	7.RP.3	
10	How Many Soda Combinations Are There On A Coke Freestyle?	Counting, Composing, and Decomposing Numbers	K.CC.5	K.CC.6	k
11	What Should The Freeway Sign Show?	Fractions on Number Lines, Converting Units, Decimal and Fraction Operations	3.NF.1	3.NF.2	3
12	How Fast Was The Fastest Motorcycle Speeding Ticket Ever?	Converting Units and Unit Rates	5.MD.1	6.RP.3d	7
13	How Much Did Patrick Peterson Lose By Not Cashing His Check?	Compound and/or Simple Interest	7.RP.3	N-RN.2	A
14	How Many Biscuits Can You Make?	Dividing Fractions and Mixed Numbers	5.NF.7	5.NF.7a	5
15	How Much Bigger Should They Make Zoolander's School?	Scale and Proportions	5.NF.5A	7.RP.2	7
16	Where Is The Freeway Sign Located?	Identifying Fractions on a Number Line	3.NF.1	3.NF.2	3
17	How Far Apart Are Exits On A Ring Road?	Arc length measures	G-C.5		
18	How Much Is One Third Of A Cup Of Butter?	Identifying Fractions on a Number Line	3.NF.1	3.NF.2	3
19	How Do Skytypers Write Messages?	Transformations (Rotations, Reflections, Dilations, and Translations)	8.G.1	8.G.2	8
20	How Big Is The Bermuda Triangle?	Coordinate Geometry: Area of Triangle	G-GPE.7		
21	What Fraction Of Children Are In The Right Car Seat?	Representing and Comparing Fractions	3.NF.1	3.NF.2	3
22	How Much Did The Temperature Drop?	Absolute Value	6.NS.7c	7.NS.1c	
23	How Much Shorter Are Staggered Pipe Stacks?	Circles, Pythagorean Theorem, trigonometric ratios, and linear functions	8.G.7	A-CED.1	A
24	How Do You Write A Check To Pay For Something?	Expanded Form	2.NBT.3	4.NBT.2	5
	How Can We Correct The Scarecrow?	Pythagorean Theorem	8.G.6	G-SRT.4	
26	How Much Does A 100×100 In-N-Out Cheeseburger Cost?	Building and Interpretting Linear Functions	8.F.1	8.F.3	8
	How Can We Water All Of The Grass?	Circles, Pythagorean Theorem, trigonometric ratios	7.G.4	8.G.7	C
28	How Much Money IS That ?!	Volume of rectangular prism	5.MD.3	5.MD.4	5
29	How Much Money Should Dr. Evil Demand?	Exponential Growth	N-RN.2	A-SSE.1	F
30	How Tall Is Mini-Me?	Scale and Dividing Decimals	5.NF.5	5.NF.5a	5
31	How Did They Make Ms. Pac-Man?	Transformations (Rotations, Reflections, and Translations)	8.G.1	8.G.2	8
32	Which Ticket Option Is The Best Deal?	Unit Rates and Ratios	6.RP.2	6.RP.3	6
33	How Far Apart Are The Freeway Exits?	Fractions on a Number Line and Subtracting Fractions	3.NF.2	3.NF.2b	4
34	Do We Have Enough Paint?	Area	3.MD.5	3.MD.6	3

EMPOWERED PROBLEM SOLVING


ROBERT KAPLINSKY


robert@robertkaplinsky.com

@robertkaplinsky



Height: 72 inches

Height: 72 inches

Width: 36 inches

Height: 72 inches

Width: 36 inches Depth: 18 inches

Sticky note

Recycled Self Stick Notes Notas autoadhesivas reciclados Notes autocollantes recyclés

- 18 pads / blocs
- 100 sheets per pad / hojas por bloc / f
 Total 1800 sheets / hojas / feuillets
- · 3 in x 3 in (76,2 mm x 76,2 mm)

Dimensions: 3" x 3"

PERFORMANCE

TASK

Robert Kaplinsky.com

CEREAL BOXES

++

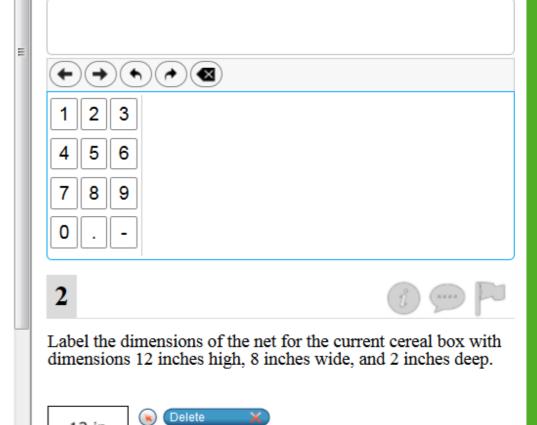
A cereal company uses cereal boxes that are rectangular prisms The boxes have the dimensions shown.

- 12 inches high
- 8 inches wide
- 2 inches deep

The managers of the company want a new size for their cereal boxes. The new boxes have to be rectangular prisms. You will evaluate one box design the company proposed. Then you will create and propose your own design for the company.

Requirements for the new boxes:

• The new boxes have to use less cardboard than the


12 in

Determine the volume of the current cereal box with the dimensions 12 inches high, 8 inches wide, and 2 inches deep.

Find the volume, V, in cubic inches, of each box.

Volume of Original Box: $V = _$ in³

Depth of Knowledge Matrix - Elementary & Secondary Math

Торіс	Surface Area and	Probability	Transformations	Factoring	Quadratics in Vertex					
	Volume			Quadratics	Form					
CCSS	• 6.G.4	• 7.SP.5	• 8.G.1	• A-SSE.3a	• F-IF.7a					
Standard(s)	• 7.G.6	• 7.SP.7	• G-CO.5							
DOK 1	Find the surface	What is the probability of	Rotate the image below 90°	Find the factors:	Find the roots and					
Example	area of a	rolling a sum of 5 using	counterclockwise about point D		maximum of the					
	rectangular prism	two 6-sided dice?	and reflect it	$2x^2 + 7x + 3$	quadratic equation					
	that measures 3		across a 🛛 🔍 之		below.					
	units by 4 units by		horizontal line.							
	5 units.		B		$y = -3(x-4)^2 - 3$					
DOK 2	List the	What value(s) have a	List three sequences of	Find three different	Create three					
Example	measurements of	1/12 probability of being	transformations that take pre-	integers to put in	equations for					
	three different	rolled as the sum of two	image 🕺	the blank that will	quadratics in vertex					
	rectangular prisms	6-sided dice?	ABCD to 🔍 🔨	make the quadratic	form that have roots					
	that each have a		image	expression	at 3 and 5 but have					
	surface area of 20		A'B'C'D'.	factorable.	different maximum					
	square units.		V Dr Pre-Image Image		and/or minimum					
			rtenmage innage	$x^2 + _x + 4$	values.					
DOK 3	What is the	Fill in the blanks to	What is the fewest number of	Fill the blank by	Create a quadratic					
Example	greatest volume	complete this sentence	transformations needed to take	finding the largest	equation with the					
	you can make with	using the whole numbers	pre-image ABCD to image A'B'C'D'?	and smallest	largest maximum					
	a rectangular	1 through 9, no more		integers that will	value using the					
	prism that has a	than one time each.	, N	make the quadratic	whole numbers 1					
	surface area of 20			expression	through 9, no more					
	square units?	Rolling a sum of on		factorable.	than one time each.					
	Square units.	twosided dice is the								
		same probability as rolling	в	$2x^2 + 3x +$	$y = -[(x-[))^2 + []$					
		a sum of on two	D'	$2x + 3x + _$						
		sided dice.	Pre-Image Image							
		sided dice.								
Robe			ilable at openmiddle com	17 Robert Kaplinsky	robertkaplinsky com					
IN Kap	Kaplinsky More free DOK 2 & 3 problems available at openmiddle.com © 2017 Robert Kaplinsky, robertkaplinsky.com									

FIVE PRACTICES

DISCUSSION QUESTIONS

- "Giving students too much or too little support, or too much direction, can result in a decline in the cognitive demands of the task." (p. 550) Why?
- "By making purposeful choices about the order in which students' work is shared, teachers can maximize the chances that their mathematical goals for the discussion will be achieved." (p. 554) What ways do teachers currently select students? How would you suggest they change their selection process after reading this?
- What challenges might teachers have when trying to "connect" student solutions? (p. 554)

IMPLEMENT 5 PRACTICES

- 1. Pick a mathematical goal that you anticipate using before looking at the student work.
- 2. Next, review the student work to simulate the reality that you won't know what students will actually do.
- 3. Figure out which students you would have share their mathematical work.
- 4. Determine the order you would have those students present their work.
- 5. Decide on which connections you would emphasize between the students' work and mathematical ideas.

POSTERS

- At the top of the poster, list the mathematical goal picked by your group. For example:
 - Starting with the most commonly used strategy and moving to one that few students used.
 - Starting with a strategy that is more concrete and moving to strategies that are more abstract.
 - Incorporating wrong answers to address common misconceptions ("Who made the best mistake?")
- Attach those students' work to the poster in the order that you would present it.
- Next to the student work list the questions you would ask the student(s) or ideas that you would want to come out as a result of showing that student's work.

Change
Transition
Ending

 Change Transition Ending Neutral Zone

 Change Transition Ending Neutral Zone New Beginning

What cloes this mean for math education?

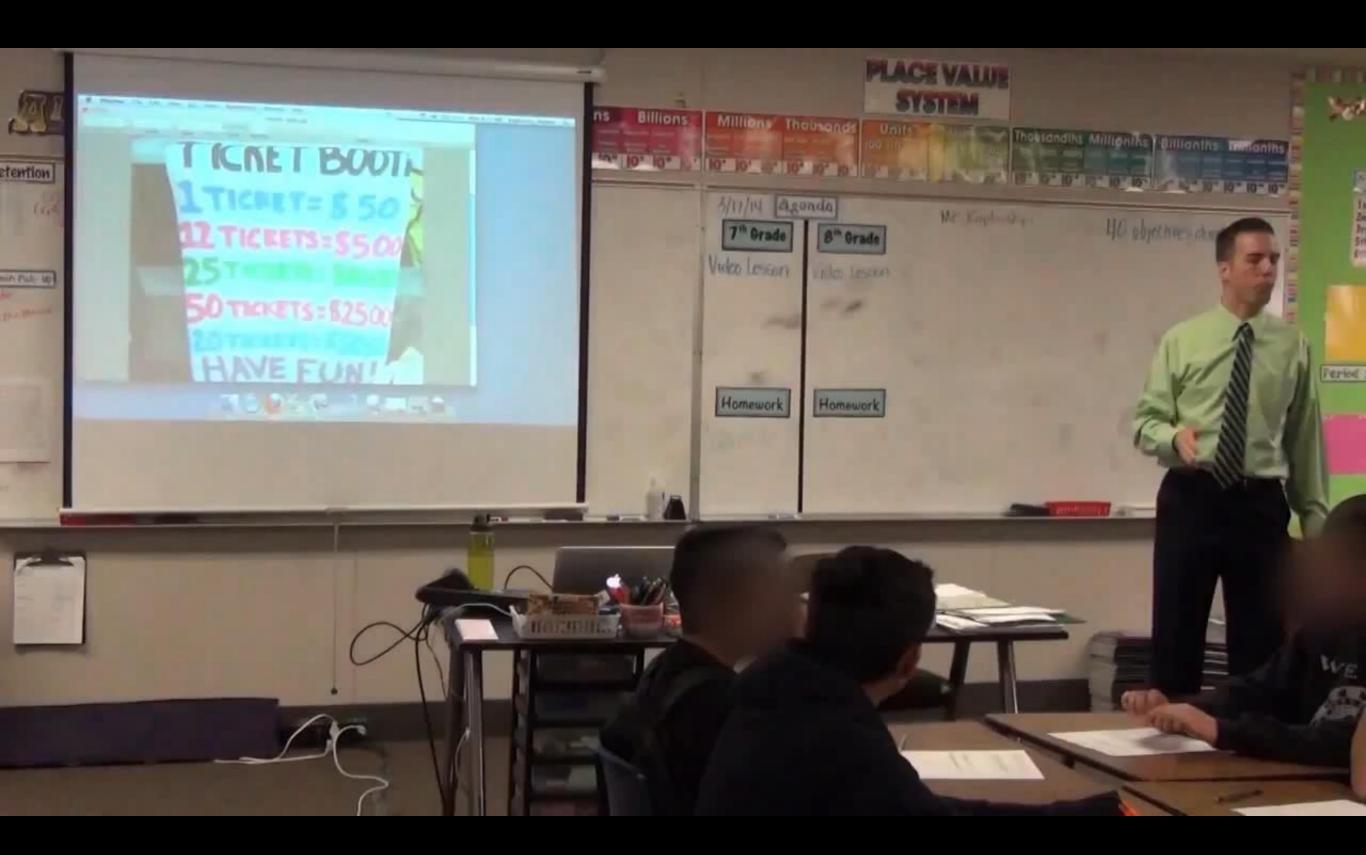
Change
Transition
Ending

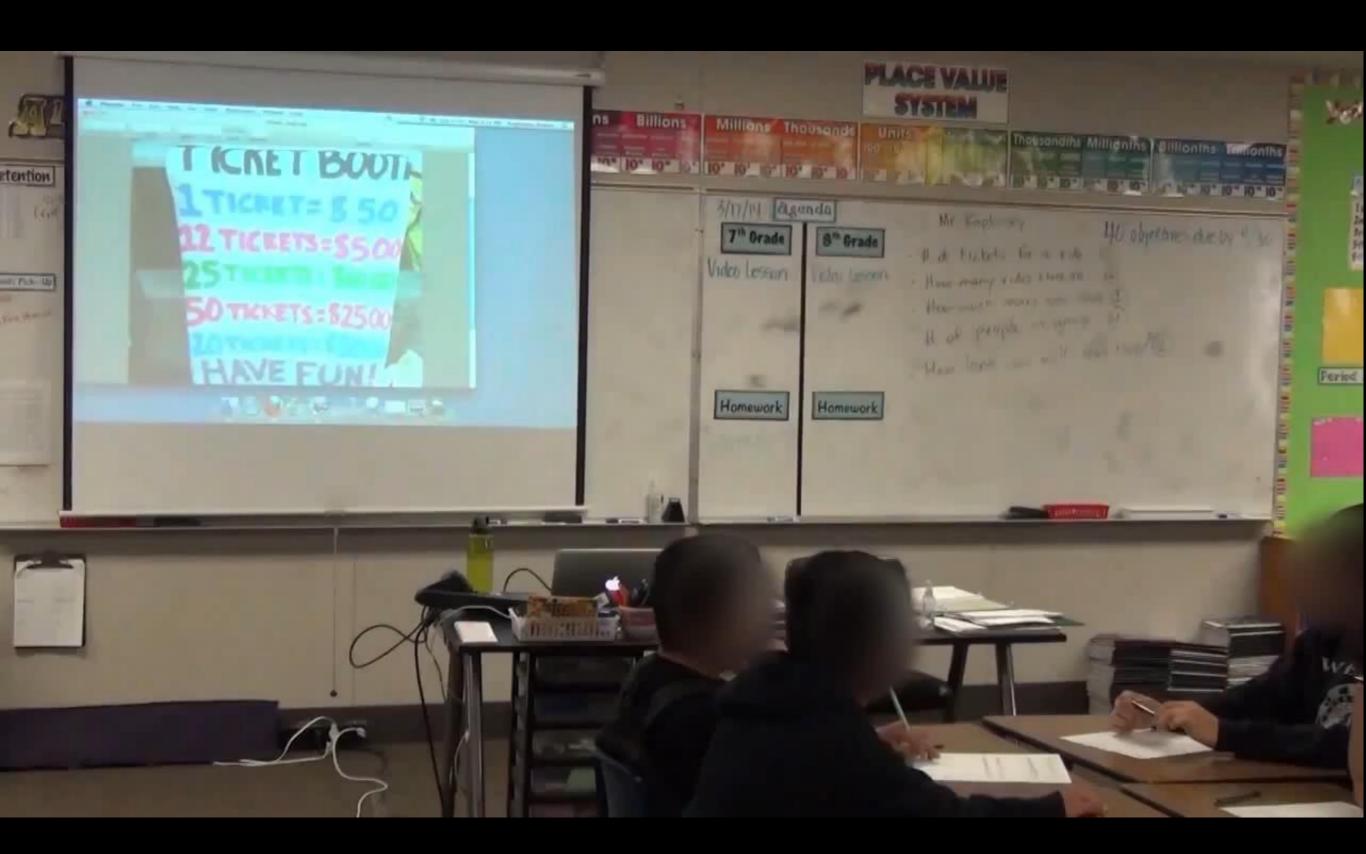
- People may not stop doing anything. They may try to do all the old things and the new things. Soon they burn out with the overload.
- People make their own decisions about what to discard and what to keep, and the result is inconsistency and chaos.
- People toss out everything that was done in the past.

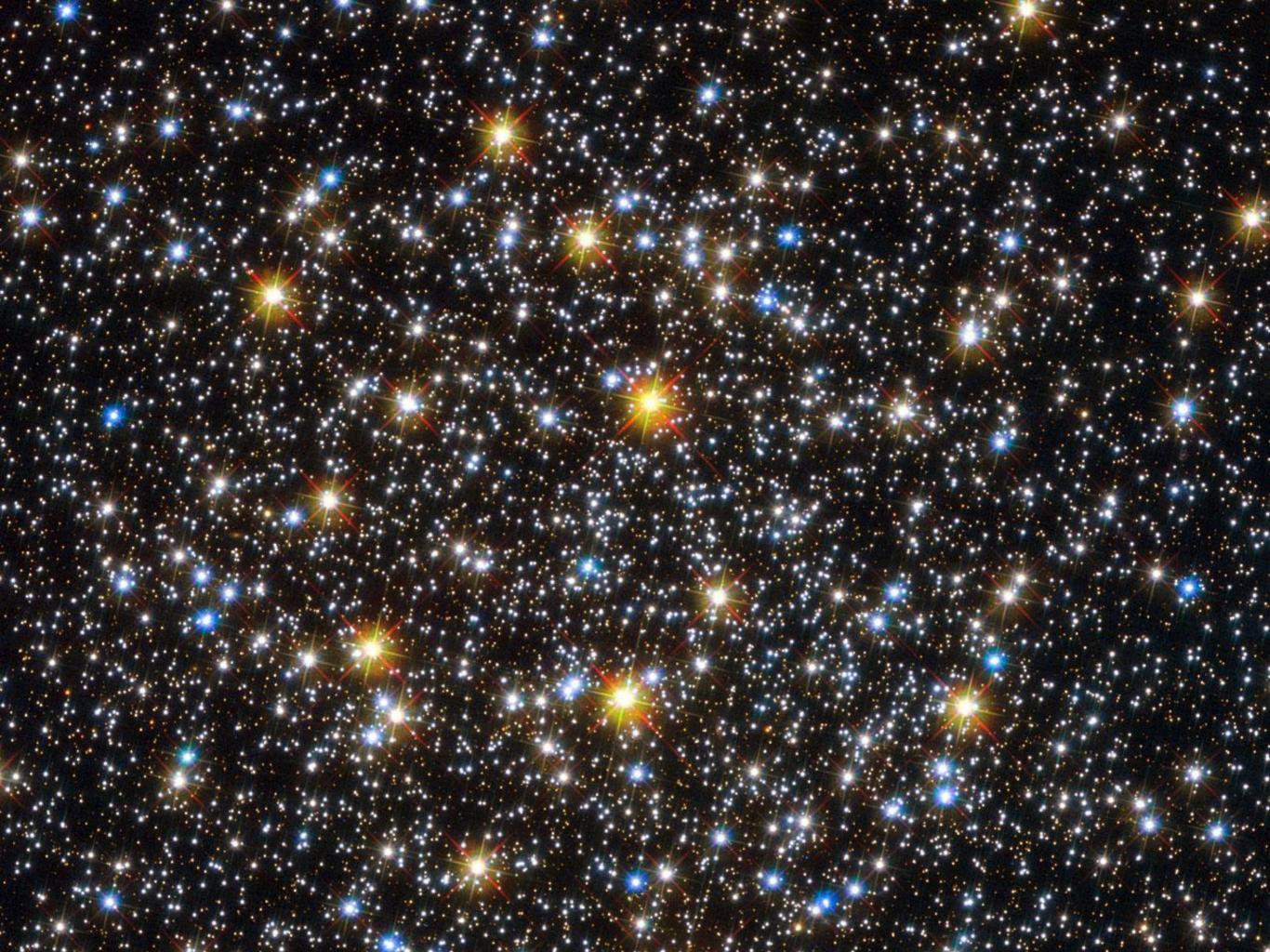
 Change Transition Ending Neutral Zone

 Change Transition Ending Neutral Zone New Beginning

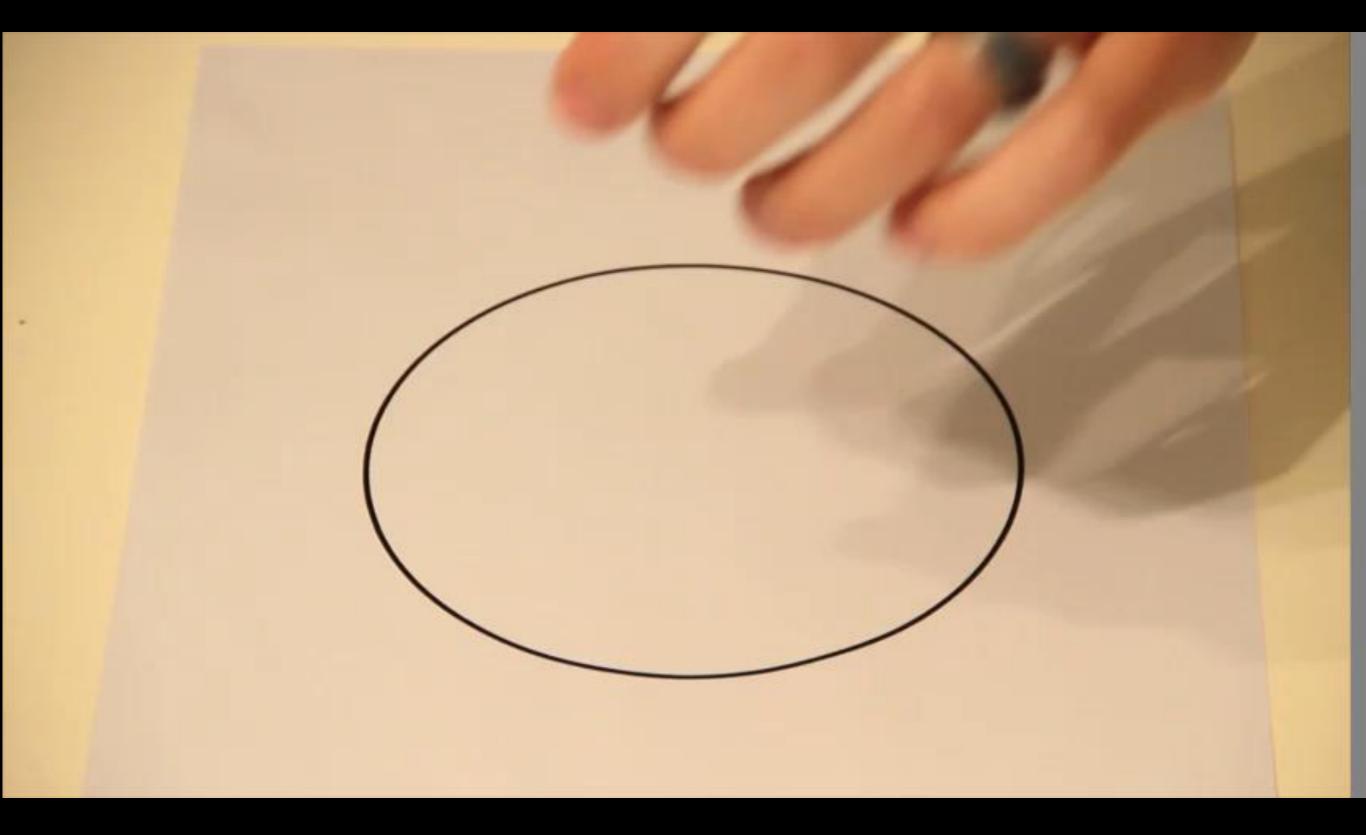
PRE-MORTEM


- The lesson flopped. What went wrong?
- You have sixty seconds to write down all the reasons the lesson did not go well.
- Create a combined list with your neighbors.
- Then discuss "less helpful" and "more helpful" ways you could address them if they do happen.




SETTING UP THE PROBLEM

- What do you do when students ask for data/information you don't have, hadn't considered, or forgot to get?
- What do you do when students ask for information that is probably not important or that they don't actually need?



SETTING UP THE PROBLEM

- What do you do when students ask for data/information you don't have, hadn't considered, or forgot to get?
- What do you do when students ask for information that is probably not important or that they don't actually need?
- What do you do when students don't know what to write for what they know and don't know?
- What do you do when you ask for an estimate and they don't know?
- What do you do when they don't ask you for information that they need to solve the problem?

Source: Dan Meyer via mrmeyer.com

 What do you do when students don't use the strategy you anticipated they would use?

American Standard

Clean™ Cadet® 3

Elongated

18.5 in

Overall dimensions: 15 in W x 31 in H x 29-3/4 in D Rough-in dimensions: 12 in Trapway size: 2 in

Dimensiones generales: 38,10 cm de ancho x 78,74 cm de alto x 75,57 cm de profundidad Dimensiones aproximadas: 30,48 cm Tamaño de canal de siñón: 5,08 cm

Item | Artículo: 84065 Model | Modelo: 3381.216.020

> Reorder # P117364

High-efficiency, dual flush toilet—1.6 gal. or 1.0 gal. flush
 Stays cleaner longer with EverClean[®] surface & PowerWash[™] flush
 Features No Tools[™] installation
 ADA approved chair height

Inodoro de descarga doble de alta eficiencia con descarga de 6.06 litros o 3.79 litros
 Permanece limpio por más tiempo con la superficie EverClean® y la descarga PowerWash™
 Cuenta con instalación No Tools™
 Altura de silla aprobada por ADA

American Standard

Clean™ Cadet® 3

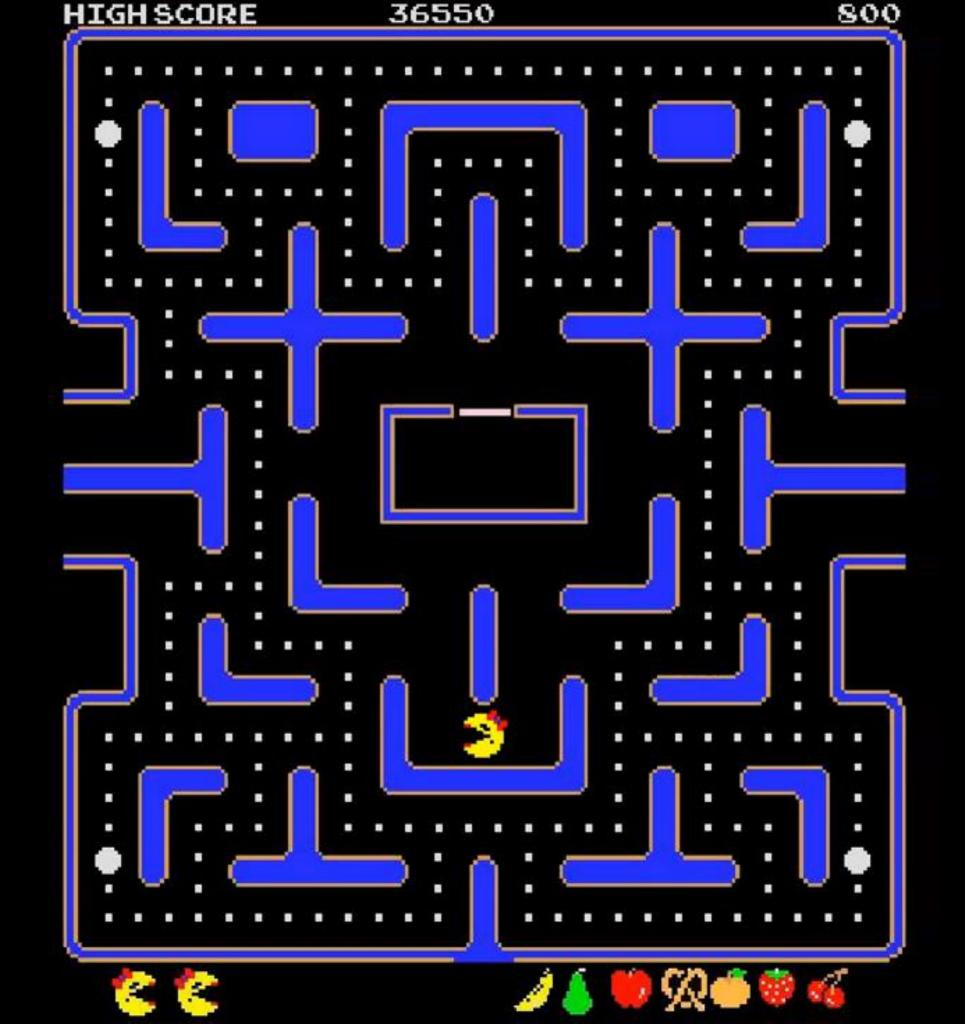
Overall dimensions: 15-3/4 in W x 30-3/4 in H x 30-1/4 in D Rough-in dimensions: 12 in Trapway size: 2-1/16 in

Dimensiones generales: 40,01 cm de ancho x 78,11 cm de alto x 76,84 cm de profundidad Dimensiones aproximadas: 30,48 cm Tamaño de canal de siñon: 5,24 cm

Item | Artículo: 88575 Model | Modelo: 2514.101.020

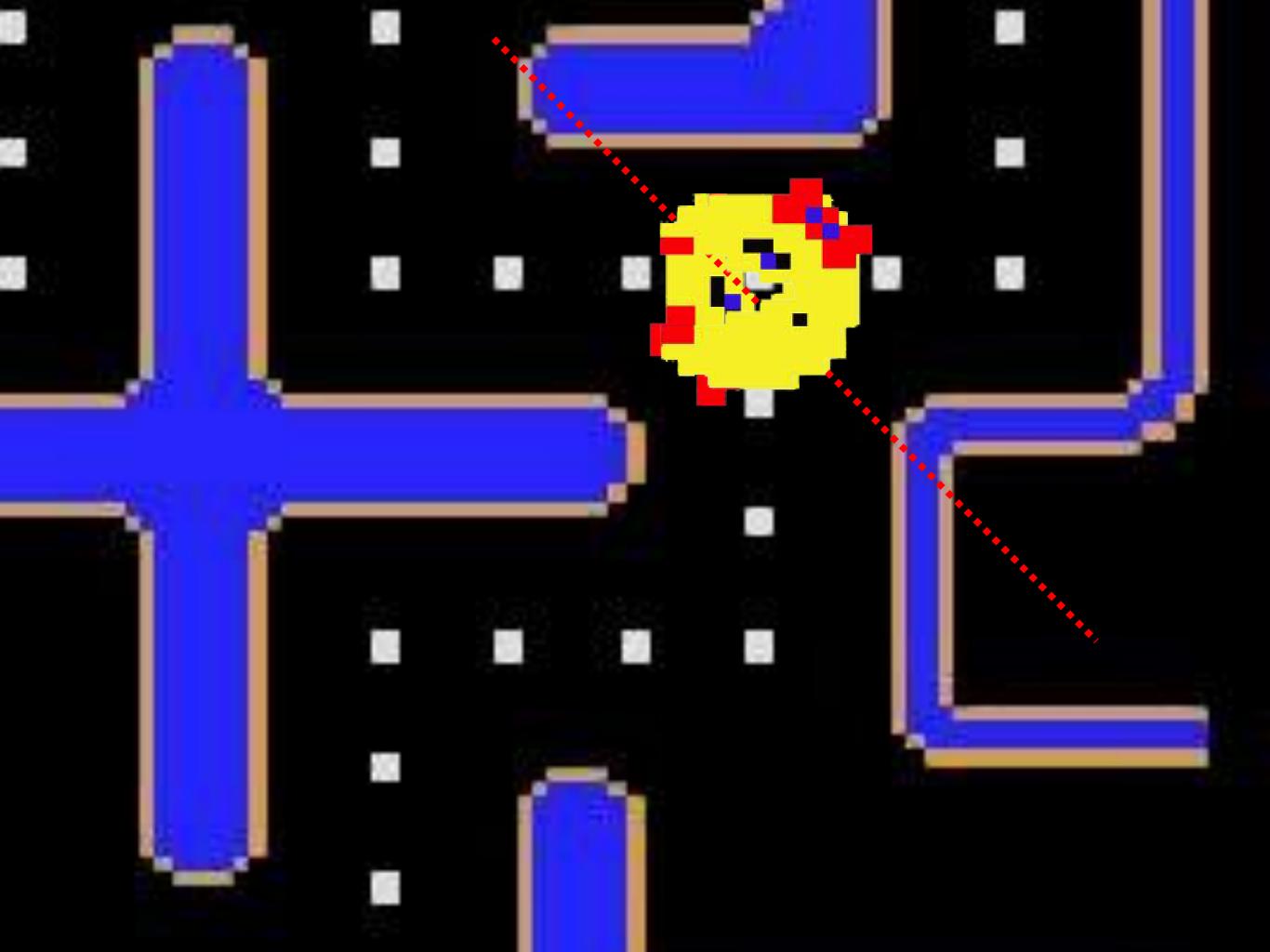
Smooth-sided toilet design
 Stays cleaner longer with EverClean[®] surface & PowerWash™ flush
 Features No Tools™ installation
 ADA approved chair height

Diseño de inodoro de lados lisos
 Permanece âmpio por más tiempo con la superficie EverClean® y la descarga PowerWash™
 Cuenta con instateción No Tools™
 Altura de silla aprobada por ADA

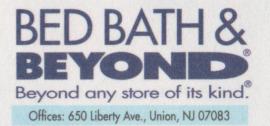


Year

Limited Warranty



- What do you do when students don't use the strategy you anticipated they would use?
- What do you do when a student comes up with a strategy for solving the problem that you do not understand?



- What do you do when students don't use the strategy you anticipated they would use?
- What do you do when a student comes up with a strategy for solving the problem that you do not understand?
- What do you do when the answer we calculate does not match with the actual answer?
- What do you do when students get stuck during the problem solving process and are not sure what to do?

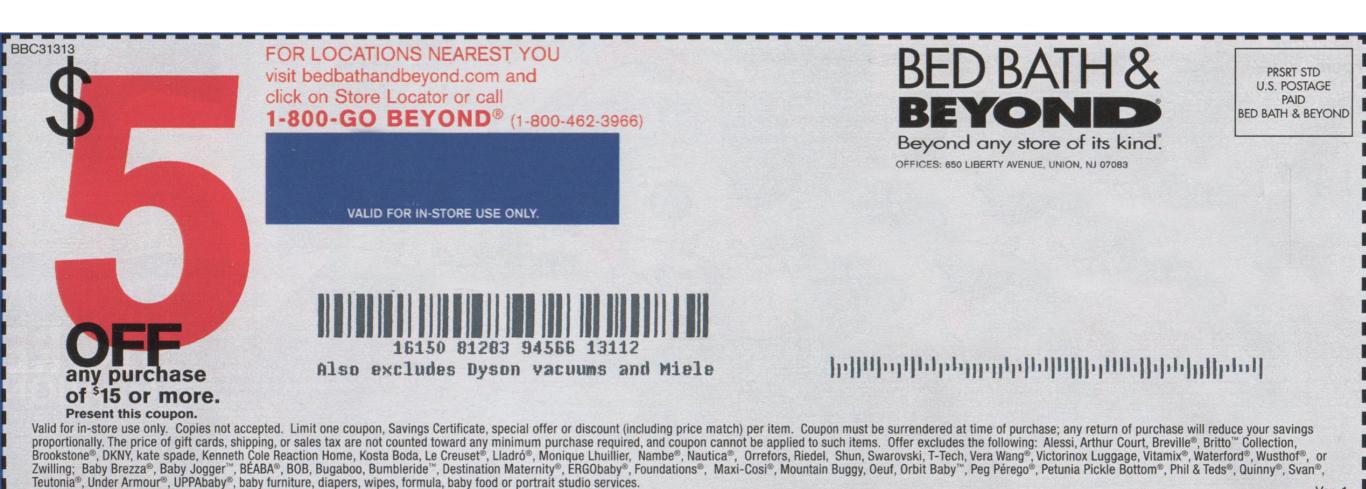
- What do you do when students don't use the strategy you anticipated they would use?
- What do you do when a student comes up with a strategy for solving the problem that you do not understand?
- What do you do when the answer we calculate does not match with the actual answer?
- What do you do when students get stuck during the problem solving process and are not sure what to do?
- What do you do when you ask students questions and few to no people are ready to respond?

- What do you do when students don't use the strategy you anticipated they would use?
- What do you do when a student comes up with a strategy for solving the problem that you do not understand?
- What do you do when the answer we calculate does not match with the actual answer?
- What do you do when students get stuck during the problem solving process and are not sure what to do?
- What do you do when you ask students questions and few to no people are ready to respond?
- What do you do when the student conclusions are low quality and/or effort?

FOR LOCATIONS NEAREST YOU visit bedbathandbeyond.com and click on Store Locator or call 1-800-GO BEYOND® (1 - 800 - 462 - 3966)

PRSRT STD **U.S. POSTAGE** PAID **BED BATH &** BEYOND

Ver. 1



Take 20% off one single item.

73283 94566 13028 Also excludes Starbucks Also excludes Dyson vacuums and Miele

Present this coupon.

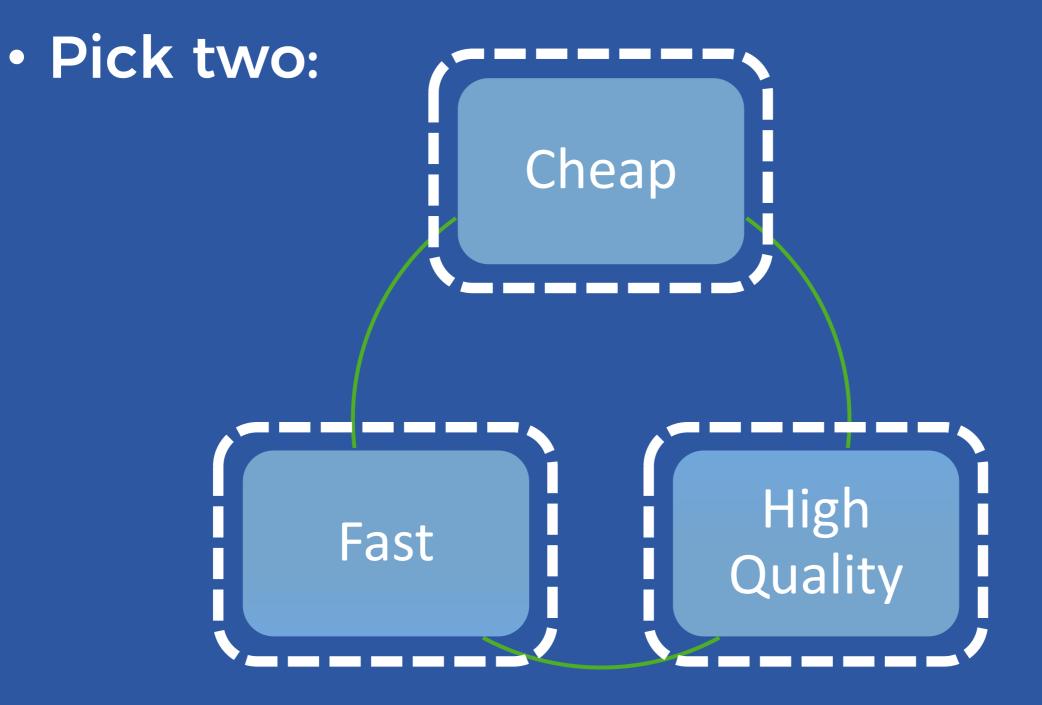
Valid for in-store use only. Copies not accepted. Limit one coupon, Savings Certificate, special offer or discount (including price match) per item. Coupon must be surrendered at time of purchase; any return of purchase will reduce your savings proportionally. The discount cannot be applied to gift cards, shipping, or sales tax. Offer excludes the following: Alessi, Arthur Court, Breville®, Britto[™] Collection, Brookstone®, DKNY, kate spade, Kenneth Cole Reaction Home, Kosta Boda, Le Creuset[®], Lladró[®], Monigue Lhuillier, Nambe[®], Nautica[®], Orrefors, Riedel, Shun, Starbucks[®] Electrics, Swarovski, T-Tech, Vera Wang[®], Victorinox Luggage, Vitamix, Waterford[®], Wusthof®, or Zwilling; Argington®, babybrezza™, Baby Jogger™, BÉABA®, BOB, Bugaboo, Bumbleride™, ERGObaby®, Foundations®, iCandy®, Maxi-Cosi®, Mountain Buggy, Oeuf, Orbit Baby™, Peg Pérego®, Phil & Teds®, Plan Toys®, Quinny®, Svan®, Teutonia®, Under Armour®, UPPAbaby®, baby furniture, diapers, wipes, formula, baby food or portrait studio services. G47QR-V2

IA conclusion each conclusion Each Itemis good for different Items

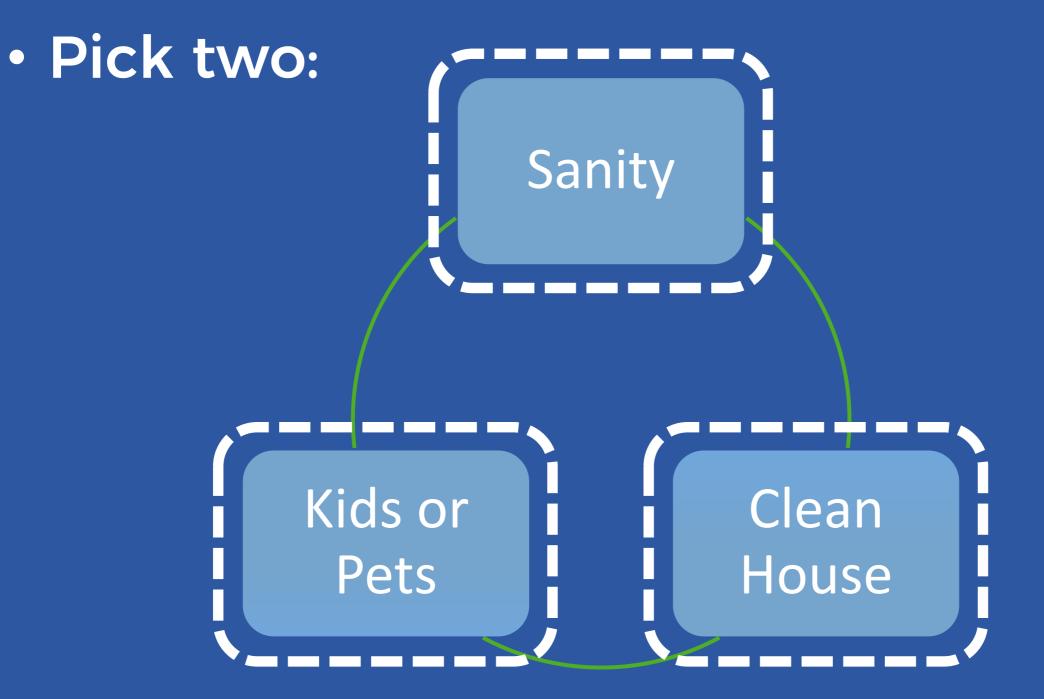
When is your conclusion? How did you reach that conclusion?

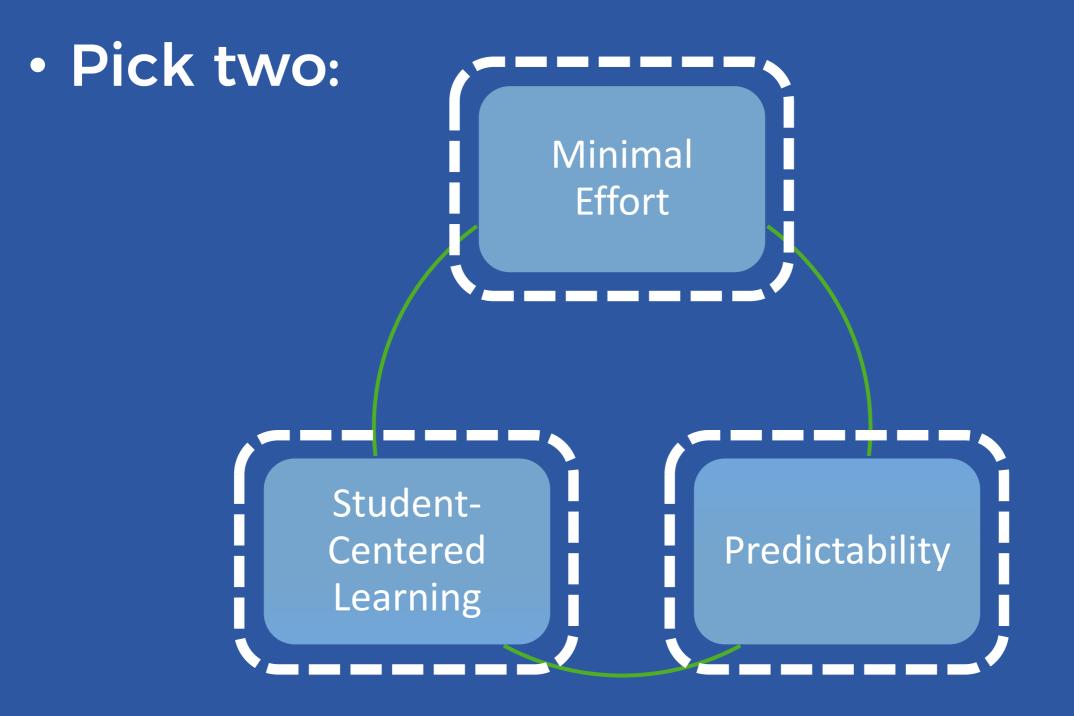
in store purchase, exclusions What is your conclusion? How did you reach that conclusion? Ff the Item is \$15 use the \$5 off because 19-5=\$10 and IF the Ftem is 447 it is better to use the 20% offcoupon because U7 - 5 = 647 - 77 - 20% = 37.60 $y_{2vs} 37.60$ \$50ff 20%0ff 18 vs 18.40 23-5=(18) 23-20% =28.40

10	Orange Chicken	5.25	Eggplant with Garlic Sauce	5.25
	Chicken Lo Mein	5.25	Ma Po Tofu	5.25
	Cashew Nut Chicken	5.25	Broccoli with Garlic Sauce	5.25
	Pungent Chicken	5.25	String Bean with Garlic Sauce	5.25
	Sweet & Sour Chicken	5.25	Vegetable Delight	5.25
	Curry Chicken	5.25	Bamboo Fungus Tofu	5.25
	Lemon Chicken	5.25	Shrimp with Asparagus	6.25
	Vegetable Chicken	5.25	Shrimp with Lobster Sauce	6.25
	Mongolian Beef	5.25	Fish Fillet with Szuchuan Sauce	6.25
	Broccoli Beef	5.25	Fish Fillet with Black Bean Sauce	6.25
,	Pungent Beef	5.25	Crab meat with Asparagus	6.25
	Sweet & Sour Pork	5.25	Sweet & Sour Shrimp	6.25



Free to an chiken lomein ifspended \$25 and not redeemake on lunch special dinnersand make party I tems Men 10 men, at is your conclusione how all you reach than conclus The 10% carpon is Best with high Prices and small orders is best with the free chicken lamein out chesse wor


What is your conclusion? How did you reach that conclusion? You can use the 10% off when you pay 20-24A9 or more the Free chicken Lo Mein when you pay 25-49.99 or more and the Free orange Chiken when you pay 35-49.99 or more



PROBLEM-BASED LEARNING

CALL TO ACTION

- Implement one problem-based lesson in your classroom in the next two weeks of school.
- Implement one DOK 2 or DOK 3 problem in your classroom in the next two weeks of school.

EMPOWERED PROBLEM SOLVING

ROBERT KAPLINSKY

robert@robertkaplinsky.com

robertkaplinsky.com/placer18

@robertkaplinsky

