Depth of Knowledge Matrix - Elementary & Secondary Math

		1			
Topic	Adding Whole Numbers	Money	Fractions on a Number Line	Area and Perimeter	Subtracting Mixed Numbers
CCSS	• 1.NBT.4	• 2.MD.8	• 3.NF.2	• 3.MD.8	• 5.NF.1
Standard(s)	• 2.NBT.5			• 4.MD.3	
DOK 1	Find the sum.	If you have 2	Which point is located at $\frac{7}{12}$	Find the perimeter	Find the difference.
Example		dimes and 3	below?	of a rectangle that	
	44 + 27 =	pennies, how	L M NO	measures 4 units	_ 1 _ 2
		many cents	<pre></pre>	by 8 units.	$5\frac{1}{2}-4\frac{2}{3}=$
		do you have?	$0 \frac{1}{2}$ 1		2 3
DOK 2	Using the digits 1 to 9	Make 47¢ in	Label the point where $\frac{3}{4}$	List the	Using the digits 1 to 9 at most
Example	at most one time each,	three	belongs on the number line	measurements of	one time each, fill in the boxes to
	fill in the boxes so that	different	below. Be as precise as	three different	create three different mixed
	you make a true	ways with	possible.	rectangles that	numbers that will make the
	equation.	either	P	each has a	equation true. You may reuse
		quarters,		perimeter of 20	the same digits for each of the
	+ 53 =	dimes,	<+++→	units.	three mixed numbers.
		nickels, or	$\begin{array}{c} 0 & 1 \\ \hline 3 \end{array}$		
		pennies.			$5\frac{4}{5} - \boxed{\frac{1}{5}} = 3\frac{1}{20}$
					5 20
DOK 3	Using the digits 1 to 9	Make 47¢	Using the digits 0 to 9 at most	What is the	Using the digits 1 to 9 at most
	at most one time each,	using exactly	one time each, create five	greatest area you	one time each, fill in the boxes to
Example	fill in the boxes to	6 coins with	fractions with a digit for each	can make with a	make the smallest difference.
	make the largest sum.	either	numerator and denominator	rectangle that has a	make the smallest difference.
	make the largest sum.	quarters,	and place them all on a	perimeter of 24	
		dimes,	number line.	units?	
		nickels, or			
		pennies.			ii ii
		F 0001			
		1	8	8	

Depth of Knowledge Matrix - Elementary & Secondary Math

Topic	Surface Area and	Probability	Transformations	Factoring	Quadratics in Vertex
	Volume			Quadratics	Form
CCSS	• 6.G.4	• 7.SP.5	• 8.G.1	• A-SSE.3a	• F-IF.7a
Standard(s)	• 7.G.6	• 7.SP.7	• G-CO.5		
DOK 1	Find the surface	What is the probability of	Rotate the image below 90°	Find the factors:	Find the roots and
Example	area of a	rolling a sum of 5 using	counterclockwise about point D	-	maximum of the
	rectangular prism	two 6-sided dice?	and reflect it	$2x^2 + 7x + 3$	quadratic equation
	that measures 3		across a 🛛 🖉 🔨 ≷		below.
	units by 4 units by		horizontal line.		
	5 units.		В		$y = -3(x-4)^2 - 3$
DOK 2	List the	What value(s) have a	List three sequences of	Find three different	Create three
Example	measurements of	1/12 probability of being	transformations that take pre-	integers to put in	equations for
	three different	rolled as the sum of two	image 🕺	the blank that will	quadratics in vertex
	rectangular prisms	6-sided dice?	ABCD to	make the quadratic	form that have roots
	that each have a		image	expression	at 3 and 5 but have
	surface area of 20		А′В′С′D′.	factorable.	different maximum
	square units.		p' Pre-Image Image		and/or minimum
				$x^2 + _x + 4$	values.
DOK 3	What is the	Using the digits 1 to 9 at	What is the fewest number of	Fill the blank by	Using the digits 1 to
Example	greatest volume	most one time each, fill in	transformations needed to take	finding the largest	9 at most one time
	you can make with	the blanks to make this	pre-image ABCD to image A'B'C'D'?	and smallest	each, fill in the boxes
	a rectangular	sentence true.	B'	integers that will	to create a quadratic
	prism that has a		A	make the quadratic	equation with the
	surface area of 20	Rolling a sum of on		expression	largest maximum
	square units?	twosided dice is the		factorable.	value.
		same probability as rolling			
		a sum of on two	► B V	$2x^2 + 3x + _$	$y = -[](x-[])^2 +[]$
		sided dice.	Pre-Image Image		

More free DOK 2 & 3 problems available at openmiddle.com

© 2017 Robert Kaplinsky, robertkaplinsky.com