RECONSIDERING WORKSHEETS

What's Wrong With Worksheets?

- Problematic math worksheets have many of the same kinds of problems on them and often _____ on the bottom.
- They often feel like ______.
- They don't really build _______.
- They don't lead to great ______.
- They don't give us ______.

What Should We Be Doing Instead?

Problem One

Solve for x.

$$21 + x = 70$$

Problem Two

Using the digits 1 to 9 at most one time each, fill in the boxes to create two equations: one where x has a positive value and one where x has a negative value. You may reuse digits for each equation.

• Problem Three

Using the digits 1 to 9 at most one time each, fill in the boxes to create an equation where x has the greatest possible value.

- A single ______ problem can replace a whole worksheet of math problems.
- If a student finds the answer in a few attempts, it likely means
 that the student used significant
 to find an _____ way to solve the problem.
- If the surveyed students are like your students, then Problems 2 and 3 help us see that ______% and ______% of the class are students who correctly answered Problem 1 but have hidden misconceptions.
- My favorite reason for using _____

 problems instead of worksheets is ______

How Do We Do It In Our Classrooms?

	When students want to give up with rigorous				
	problems, we can use an				
	so that they want to				
	keep trying and develop a growth mindset about mathematics.				
•	Three options for integrating				
	problems include our,				
	, and				

Where Do We Get More Problems?

•	I can download hundreds of ready-to-go problems from	
	kindergarten through calculus at	

What Comes Next?

Action	Do Now	Start Planning	Don't Do
Try these problems out			
with your students			
Find more problems I can			
use on the website.			
Incorporate them on			
assessments.			
Replace all traditional			
problems with these			
problems.			
Share these resources with			
colleagues to make them			
aware.			

Depth of Knowledge Matrix - Elementary Math

Topic	Adding 1-Digit Numbers (< 5)	Equality	Interpreting Data	Money
CCSS Stand.	• K.OA.5	• 1.OA.7	• 1.MD.4	• 2.MD.8
DOK 1	Solve.	Determine whether the	How many people were	If you have 1 quarter, 4
Example		number sentence is true or	surveyed?	dimes, 2 nickels, and 3
	3 + 1 =	false.	3 +	pennies, how many cents do
		4+1=5-2	2 +	you have?
		111 5 2	1+	
			Blue Red Yellow	
501/5			Favorite Color	100
DOK 2	Using the digits 1 to 5 at	Using the digits 1 to 9 at most	Make a graph that shows a	Make 72¢ in two different
Example	most one time each, fill in the	one time each, fill in the boxes	possible result of 7 students'	ways with either quarters,
	boxes to create two true	to create two true number	favorite color. 3 +	dimes, nickels, or pennies.
	number sentences.	sentences.		
			2 +	
	+ =		1 +	
			Blue Red Yellow Favorite Color	
DOK 3	Using the digits 1 to 5 at	Using the digits 1 to 9 at most	Make a graph that shows a	Make 72¢ using exactly 9
Example	most one time each, fill in the	one time each, fill in the boxes	possible result of 7 students'	coins that are either quarters,
	boxes to create a true	to create a true number	favorite color with red being	dimes, nickels, or pennies.
	number sentences with the	sentence with the greatest	the most popular color.	
	greatest possible sum.	possible value.	3 +	
			2 +	
			1+	
			Blue Red Yellow	
			Favorite Color	

Depth of Knowledge Matrix - Elementary Math

Topic	Subtracting 3-Digit Numbers	Operations with Time	Comparing Fractions	Multiplying Decimals
CCSS Stand.	• 3.NBT.2	• 3.MD.1	• 4.NF.2	• 5.NBT.7
DOK 1	Solve.	What time will it be 14	Place a < or > between the	Solve.
Example		minutes after 1:27 pm?	two fractions to make a true	
	821 - 357 =		number sentence.	$3.4 \times 2.5 =$
			4 3	
			$\frac{1}{7}$ $\frac{3}{5}$	
			/ 5	
DOK 2	Using the digits 1 to 9 at	Using the digits 1 to 9 at most	Using the digits 1 to 9 at most	Using the digits 1 to 9 at most
Example	most one time each, fill in the	one time each, fill in the boxes	one time each, fill in the boxes	one time each, fill in the boxes
	boxes to make two different	to make a time that is 4:37	to create two different	to make a true number
	pairs of three-digit numbers	pm.	fractions: one that is less than	sentence.
	that form a true number	,	one half and one that is more	, ,
	sentence.	minutes after	than one half.	×3.2=
	-291=	[]: pm	$\left \frac{\square}{\square} < \frac{1}{2} \text{ and } \frac{\square}{\square} > \frac{1}{2} \right $	
DOK 3	Using the digits 1 to 9 at	Using the digits 1 to 9 at most	Using the digits 1 to 9 at most	Using the digits 1 to 9 at most
Example	most one time each, fill in the	one time each, fill in the boxes	one time each, fill in the boxes	one time each, fill in the boxes
	boxes to make a difference	to make the latest possible	to create a fraction that is as	so that the product is as close
	that is as close to 329 as	time.	close to 5/11 as possible.	to 50 as possible.
	possible.		·	
		minutes after	<u> </u>	
		: pm		
			ii	

Depth of Knowledge Matrix - Secondary Math

Tonic	Dividing Fractions	Colving Two Cton Equations	Evnenente	Colving Equations with
Topic	Dividing Fractions	Solving Two-Step Equations	Exponents	Solving Equations with
				Variables on Both Sides
CCSS	• 6.NS.1	• 7.EE.4a	• 8.EE.1	• 8.EE.8
Standard(s)				• A-REI.3
DOK 1	Evaluate.	Solve for x.	Evaluate.	Solve for x.
Example	$\frac{4}{9} \div \frac{2}{5}$	2x + 3 = 9	3 ⁴	3x + 2 = -2x + 4
DOK 2 Example	Using the digits 1 to 9 at most one time each, fill in the boxes to make two different pairs of fractions that have a quotient of $2/3$. ${} \div {} = \frac{2}{3}$	Using the digits 1 to 9 at most one time each, fill in the boxes to create two equations: one where x has a positive value and one where x has a negative value.	Using the digits 1 to 9 at most one time each, fill in the boxes to make two true number sentences. = 64	Using the digits 1 to 9 at most \underline{two} times each, fill in the boxes to make an equation with no solutions. $x + \underline{} = \underline{} x + \underline{}$
DOK 3 Example	Using the digits 1 to 9 at most one time each, fill in the boxes to make two fractions that have a quotient that is as close to 4/11 as possible.	Using the digits 1 to 9 at most one time each, fill in the boxes to create an equation where x has the greatest possible value.	Using the digits 1 to 9 at most one time each, fill in the boxes to make a result that has the greatest value possible.	Using the digits 1 to 9 at most one time each, fill in the boxes so that the solution is closest to zero. $x + x = x + x$

Depth of Knowledge Matrix - Secondary Math

Topic	Geometric Proofs	Complex Numbers	Trigonometric Functions	Definite Integrals
CCSS Standard(s)	• G-CO.11	• N-CN.2	• F-TF.3	• N/A
DOK 1 Example	Add one geometric marking to demonstrate the quadrilateral is a square.	Multiply the binomials. $(3+4i)(2+3i)$	Evaluate. $\sin\frac{\pi}{3}$	Solve. $\int_{2}^{6} x^{3} dx$
DOK 2 Example	Use exactly five geometric markings to show that a quadrilateral is a square.	Using the integers -9 to 9 at most one time each, fill in the boxes twice: once to make a positive real number product and once to make a negative real number product. (+ i)(+ i)	Using the digits 1 to 9 at most one time each, fill in the boxes to make two true number sentences. $\sin \frac{\pi}{1-\tau} = 1$	Using the digits 1 to 9 at most one time each, fill in the boxes to make a positive and a negative solution. $\int_{-\infty}^{\infty} x^{-\infty} dx$
DOK 3 Example	What is the least number of geometric markings needed to demonstrate that a quadrilateral is a square?	Using the integers -9 to 9 at most one time each, fill in the boxes to make a real number product with the greatest value. (+ i)(+ i)	Using the digits 1 to 9 at most one time each, fill in the boxes to find the function's greatest possible value. $\sin \frac{\pi}{1-\pi} = \frac{\sqrt{1-\pi}}{1-\pi}$	Using the digits 1 to 9 at most one time each, fill in the boxes to make a solution that is as close to 100 as possible. $\int_{-\infty}^{+\infty} x^{-1} dx$

