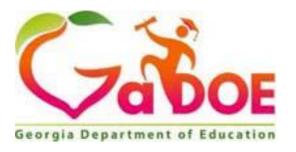
WHY WE SHOULD RECONSIDER (AND WHAT WE SHOULD BE DOING INSTEAD)

ROBERT KAPLINSKY

robert@robertkaplinsky.com

robertkaplinsky.com

@robertkaplinsky


- □ WHO AM !?
- ☐ WHAT'S WRONG WITH WORKSHEETS?
- ☐ WHAT SHOULD WE BE DOING INSTEAD?
- HOW DO WE DO IT IN OUR CLASSROOMS?
- ☐ WHERE DO WE GET MORE PROBLEMS?
- ☐ WHAT COMES NEXT?

- WHO AM !?
- ☐ WHAT'S WRONG WITH WORKSHEETS?
- ☐ WHAT SHOULD WE BE DOING INSTEAD?
- HOW DO WE DO IT IN OUR CLASSROOMS?
- ☐ WHERE DO WE GET MORE PROBLEMS?
- ☐ WHAT COMES NEXT?

One-Step Equations

Date_____ Period____

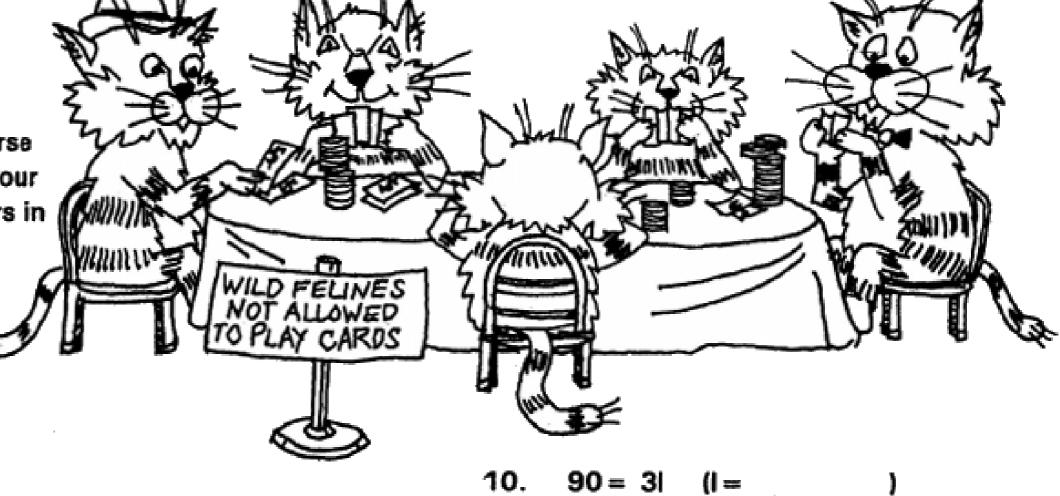
Solve each equation.

1)
$$26 = 8 + v$$

2)
$$3 + p = 8$$

3)
$$15 + b = 23$$

4)
$$-15 + n = -9$$


5)
$$m+4=-12$$

6)
$$x - 7 = 13$$

Why shouldn't some cats play cards?

operation. Use a calculator where necessary. Find your answer in the decoder. Each time your answer occurs in the decoder, write the letter of the problem above it.

1.
$$3 + g = 13 (g = ____)$$

7.
$$\frac{i}{2.3} = 6.7 \quad (i = ____)$$

12.
$$\underline{b} = 31 \ (b = \underline{\hspace{1cm}})$$

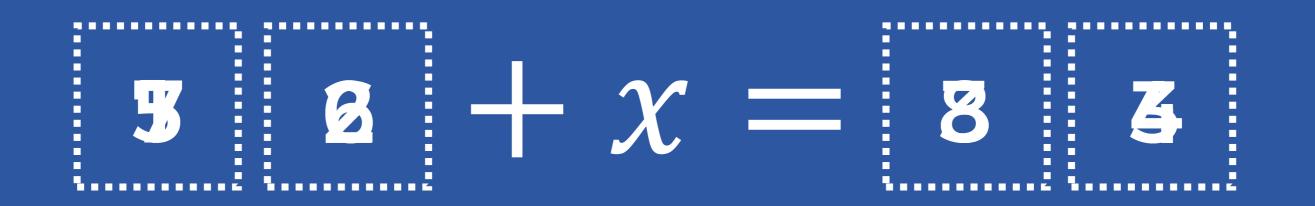
11. 7.2 = 0.36n (n = ____)

9.
$$180 = t - 35 (t =)$$

13.
$$4c = 60 (c =$$

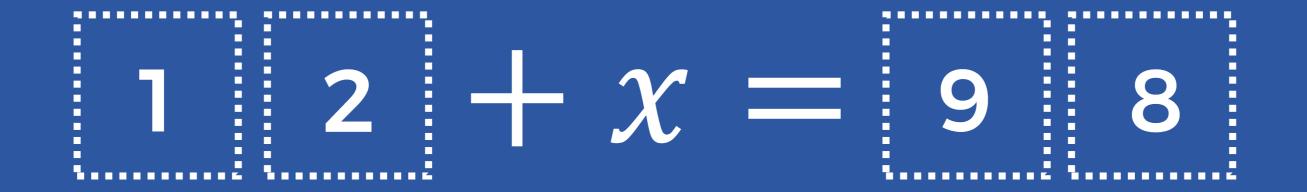
WORKSHEET CONCERNS

- OFTEN FEELS LIKE BUSY WORK
- DON'T REALLY BUILD SENSE MAKING
- RARELY LEAD TO GREAT CONVERSATIONS
- DON'T GIVE US RICH INFORMATION

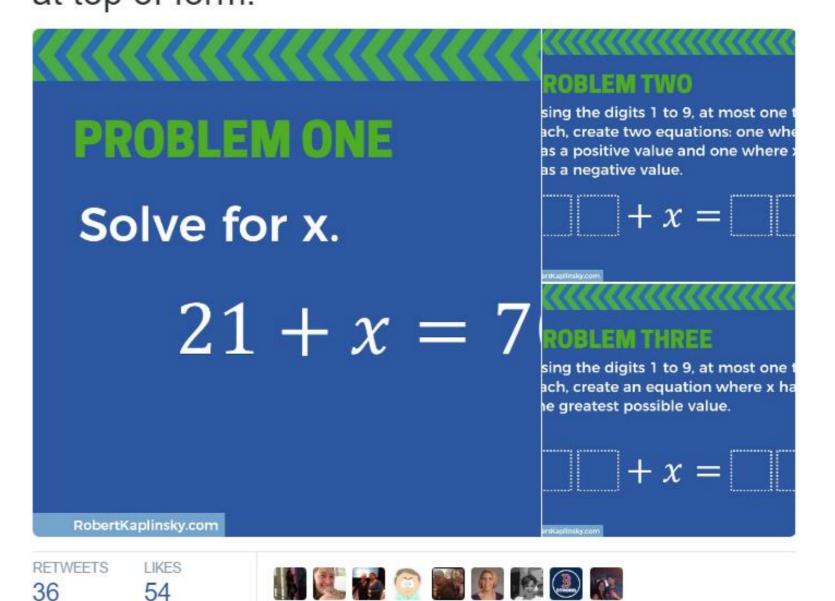

- WHO AM !?
- WHAT'S WRONG WITH WORKSHEETS?
- ☐ WHAT SHOULD WE BE DOING INSTEAD?
- HOW DO WE DO IT IN OUR CLASSROOMS?
- ☐ WHERE DO WE GET MORE PROBLEMS?
- ☐ WHAT COMES NEXT?

PROBLEM ONE Solve for x.

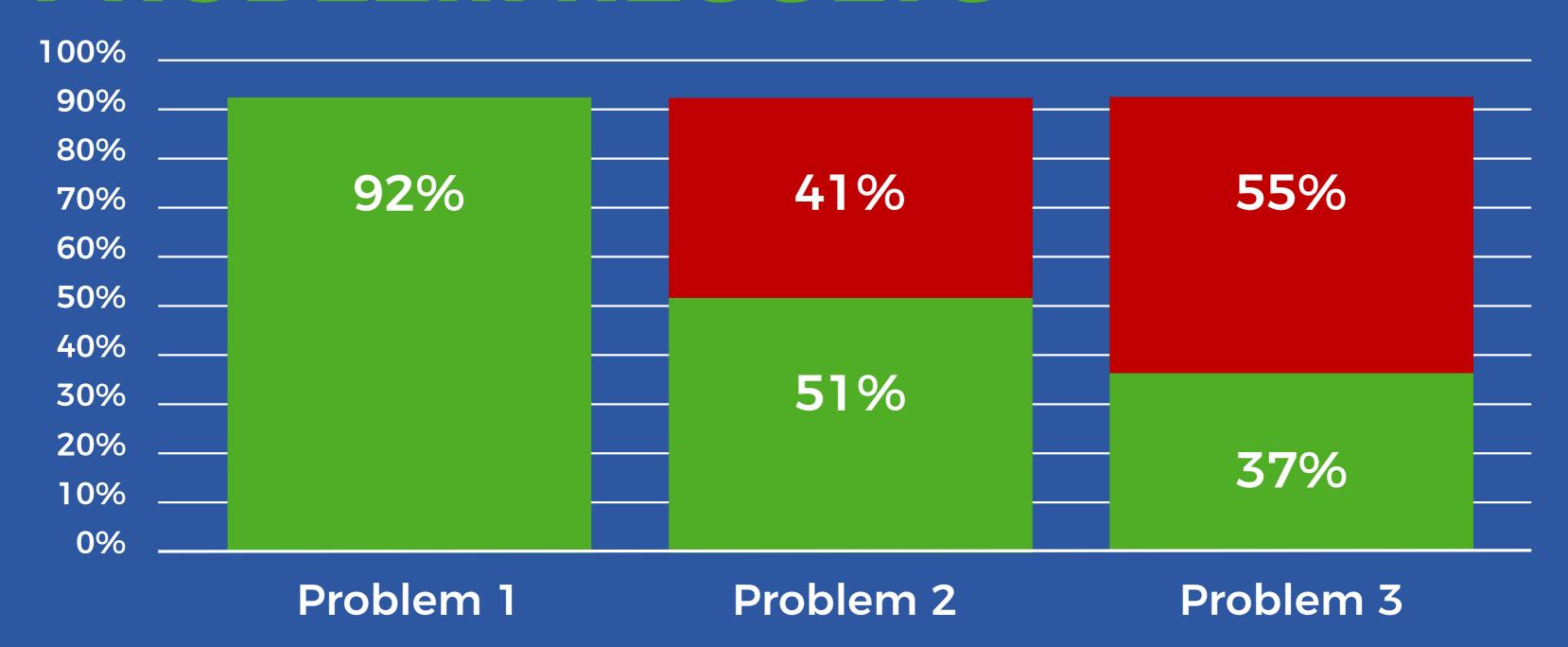
$$21 + x = 70$$


PROBLEM TWO

Using the digits 1 to 9 at most one time each, place a digit in each box to create two equations: one where x has a positive value and one where x has a negative value. You may reuse the digits for each equation.


PROBLEM THREE

Using the digits 1 to 9 at most one time each, place a digit in each box to create an equation where x has the greatest possible value.

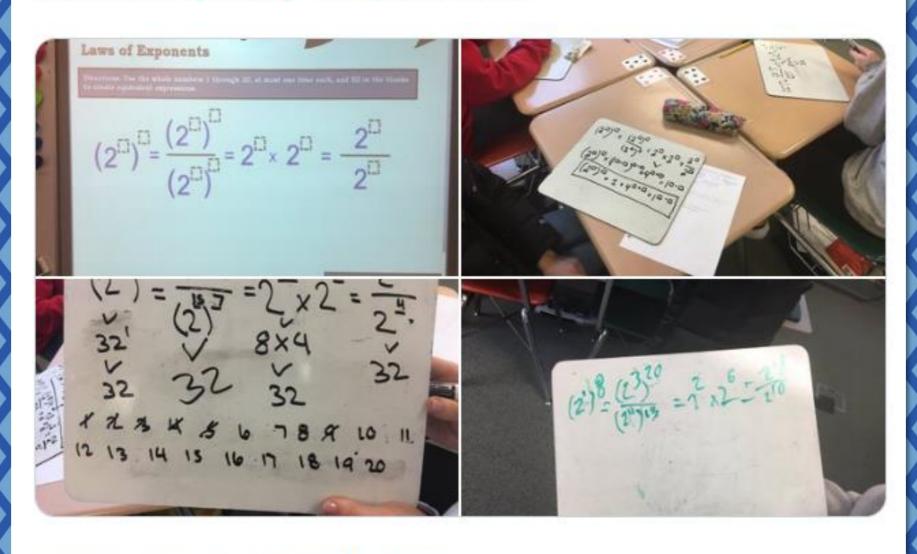


MS & HS #MTBoS Ts, please ask your Ss these 3 ?s and put the % who answered correctly here: docs.google.com/forms/d/e/1FAI Answers at top of form.

36

PROBLEM RESULTS

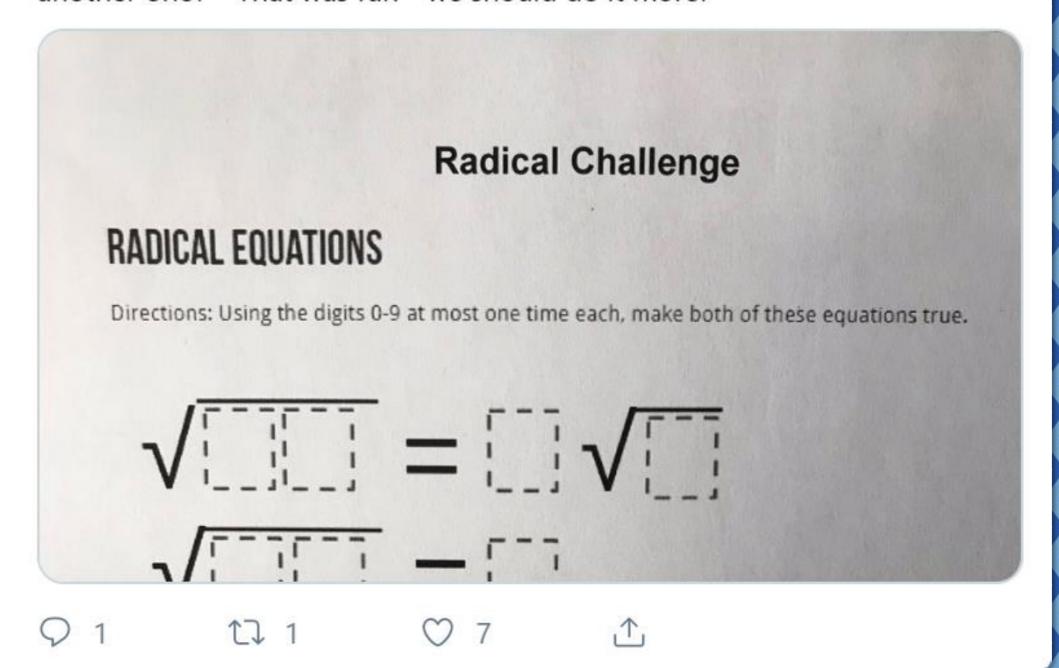
Depth of Knowledge Matrix - Secondary Math


Topic	Dividing Fractions	Solving Two-Step Equations	Exponents	Solving Equations with Variables on Both Sides
CCSS Standard(s)	• 6.NS.1	• 7.EE.4a	• 8.EE.1	8.EE.8A-REI.3
DOK 1	Evaluate.	Solve for x.	Evaluate.	Solve for x.
Example	$\frac{4}{9} \div \frac{2}{5}$	2x + 3 = 9	34	3x + 2 = -2x + 4
DOK 2	Using the digits 1 to 9 at most	Using the digits 1 to 9 at most	Using the digits 1 to 9 at most	Using the digits 1 to 9 at most
Example	one time each, fill in the boxes to make two different pairs of fractions that have a quotient of $2/3$. ${} \div {} = \frac{2}{3}$	one time each, fill in the boxes to create two equations: one where x has a positive value and one where x has a negative value.	one time each, fill in the boxes to make two true number sentences. = 64	times each, fill in the boxes to make an equation with no solutions. $ x+ = x + $
DOK 3	Using the digits 1 to 9 at most	Using the digits 1 to 9 at most	Using the digits 1 to 9 at most	Using the digits 1 to 9 at most
Example	one time each, fill in the boxes to make two fractions that have a quotient that is as close to 4/11 as possible.	one time each, fill in the boxes to create an equation where <i>x</i> has the greatest possible value.	one time each, fill in the boxes to make a result that has the greatest value possible.	one time each, fill in the boxes so that the solution is closest to zero.
		x+=	—	

Depth of Knowledge Matrix - Secondary Math

Topic	Geometric Proofs	Complex Numbers	Trigonometric Functions	Definite Integrals
CCSS Standard(s)	• G-CO.11	• N-CN.2	• F-TF.3	• N/A
DOK 1 Example	Add one geometric marking to demonstrate the quadrilateral is a square.	Multiply the binomials. $(3 + 4i)(2 + 3i)$	Evaluate. $\sin\frac{\pi}{3}$	Solve. $\int_{2}^{6} x^{3} dx$
DOK 2 Example	Use exactly five geometric markings to show that a quadrilateral is a square.	Using the integers -9 to 9 at most one time each, fill in the boxes twice: once to make a positive real number product and once to make a negative real number product. (+ i) (+ i)	Using the digits 1 to 9 at most one time each, fill in the boxes to make two true number sentences. $\sin\frac{\pi}{2}=1$	Using the digits 1 to 9 at most one time each, fill in the boxes to make a positive and a negative solution. $\int_{-\infty}^{+\infty} x^{-\infty} dx$
DOK 3 Example	What is the least number of geometric markings needed to demonstrate that a quadrilateral is a square?	Using the integers -9 to 9 at most one time each, fill in the boxes to make a real number product with the greatest value. (+ i)(+ i)	Using the digits 1 to 9 at most one time each, fill in the boxes to find the function's greatest possible value. $\sin \frac{\pi}{2\pi} = \frac{\sqrt{2\pi}}{2\pi}$	Using the digits 1 to 9 at most one time each, fill in the boxes to make a solution that is as close to 100 as possible. $\int_{-\infty}^{+\infty} x^{-1} dx$

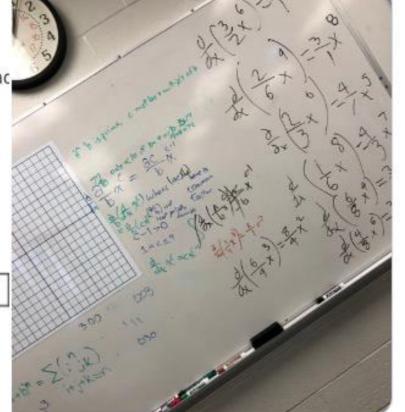
Kids begging for more time and yelling, "No" when I asked if they wanted a hint! Amazing activity @robertkaplinsky @openmiddle


1:30 PM · Mar 8, 2019 · Twitter for iPhone

14 Retweets 98 Likes

Marguerite Spriggs @mspriggs30 · Nov 16, 2018

My **first time trying** an **@openmiddle** problem with my students today. Wasn't sure how it would go or if they'd solve it. After a few minutes going at it (and coming up with more than one solution) they asked "can we do another one?" "That was fun - we should do it more!"



Tried an @openmiddle problem (for the 1st time) with my calculus crew. Left it on the board went to grab a photocopy before class start. Came back and Ss were crowded around the board sharing ideas. It's was magical. I *must* bring these to all my classes #MTBoS #iteachmath

VATIVE POWER RULE

ons: Use the digits 1 to 9, at most one time each test to create a true derivative statement.

$$\frac{d}{dx} \left(\frac{\Box}{\Box} x^{\Box} \right) = \frac{\Box}{\Box} x^{\Box}$$

2:17 PM · Apr 18, 2019 · Twitter for iPhone

20 Retweets 156 Likes

Replying to @robertkaplinsky @openmiddle and @And02B

My students live for these! Nearly every day I'm asked, "You got anymore of those open problem things for us to solve?"

6:44 PM · Apr 17, 2019 · Twitter for iPhone

5 Likes

OPEN MIDDLE PROBLEM BENEFITS

- KIDS LOVE DOING THEM
- BUILD CONCEPTUAL UNDERSTANDING
- OFTEN LEAD TO GREAT CONVERSATIONS
- REVEAL HIDDEN MISCONCEPTIONS

- WHO AM !?
- WHAT'S WRONG WITH WORKSHEETS?
- WHAT SHOULD WE BE DOING INSTEAD?
- HOW DO WE DO IT IN OUR CLASSROOMS?
- ☐ WHERE DO WE GET MORE PROBLEMS?
- ☐ WHAT COMES NEXT?

HOW DO WE DO IT?

Open Middle Worksheet

Name:	Period: Date:
First attempt:	Points:/2 attempt/2 explanation
What did you learn from this attempt? How will your str	rategy change on your next attempt?
Second attempt:	Points:/2 attempt/2 explanation

First attempt:	Points	:	_/2	attem	ipt	_/2 exp	lanation
What did you learn from this atte	emnt?	How	will	VOUL	strateav	change	on vour
next attempt?	cilipi:	110 11	*****	7001	sir dieg /	change	011 / 001
•							

HOW DO WE DO IT?


- Open Middle Worksheet
- Classwork
- Homework
- Assessments

- WHO AM !?
- WHAT'S WRONG WITH WORKSHEETS?
- WHAT SHOULD WE BE DOING INSTEAD?
- M HOW DO WE DO IT IN OUR CLASSROOMS?
- ☐ WHERE DO WE GET MORE PROBLEMS?
- ☐ WHAT COMES NEXT?

Kinder ▼ 1st Gr ▼ 2nd Gr ▼ 3rd Gr ▼ 4th Gr ▼ 5th Gr ▼ 6th Gr ▼ 7th Gr ▼ 8th Gr ▼ High School ▼ About ▼ Submit 🝱 English ▼

Q

WANT TO SHARE OPEN MIDDLE WITH OTHERS?

CHECK OUT THESE FREE WEBINARS TO HELP TEACHERS RETHINK CLASSWORK

Elementary Version

Secondary Version

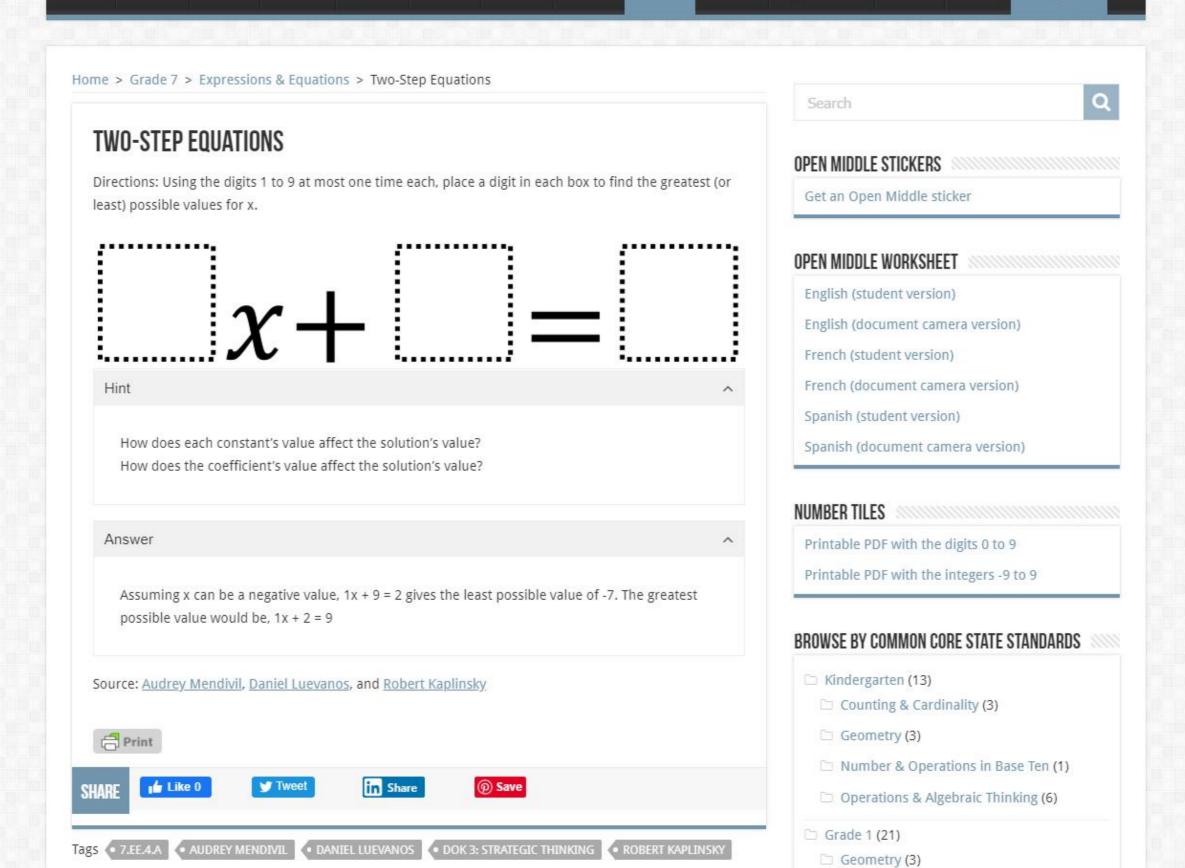
Search OPEN MIDDLE STICKERS Get an Open Middle sticker OPEN MIDDLE WORKSHEET English (student version) English (document camera version) French (student version) French (document camera version)

NUMBER TILES

Printable PDF with the digits 0 to 9

Spanish (document camera version)

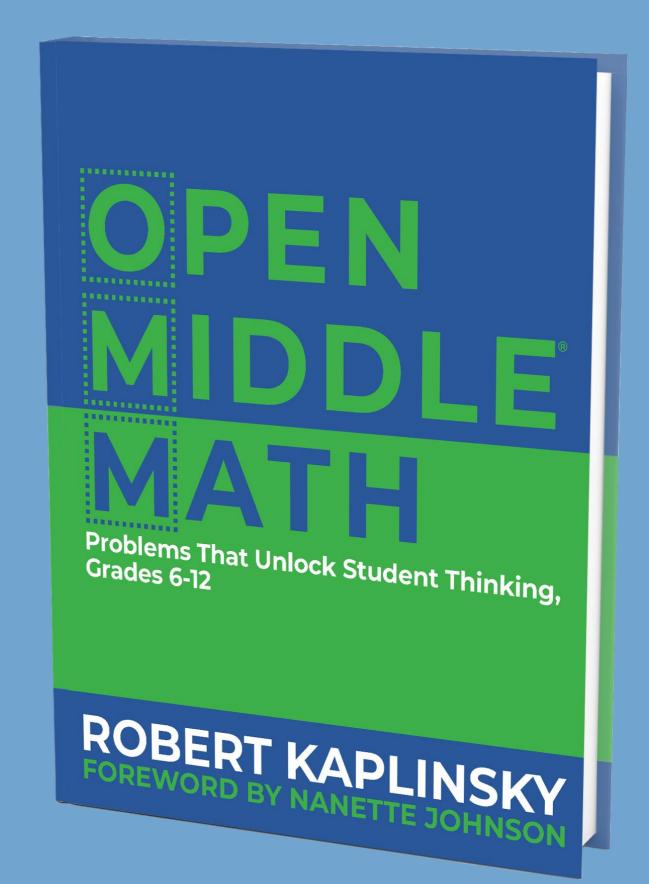
Spanish (student version)


Printable PDF with the integers -9 to 9

BROWSE BY COMMON CORE STATE STANDARDS

- ☐ Kindergarten (13)
- Counting & Cardinality (3)
- Geometry (3)
- Number & Operations in Base Ten (1)
- Operations & Algebraic Thinking (6)
- Grade 1 (21)
- Geometry (3)

Home Kinder ▼ 1st Gr ▼ 2nd Gr ▼ 3rd Gr ▼ 4th Gr ▼ 5th Gr ▼ 6th Gr ▼ 7th Gr ▼ 8th Gr ▼ High School ▼ About ▼ Submit 🝱 English ▼



- WHO AM !?
- WHAT'S WRONG WITH WORKSHEETS?
- WHAT SHOULD WE BE DOING INSTEAD?
- M HOW DO WE DO IT IN OUR CLASSROOMS?
- WHERE DO WE GET MORE PROBLEMS?
- ☐ WHAT COMES NEXT?

WHAT COMES NEXT?

Action	Do Now	Start Planning	Don't Do
Try Open Middle problems out with your students			
Find more problems I can use on the Open Middle website.			
Incorporate Open Middle problems on assessments.			
Replace all traditional problems with Open Middle problems.			
Share these resources with colleagues to make them aware.			

smarturl.it/openmiddle

WEBINAR RESOURCES

- PDF copy of the presentation
- Elementary version of this webinar
- Open Middle DOK Matrices

robertkaplinsky.com/stenhouse