Depth of Knowledge Matrix – Geometry (Integrated 2)

Торіс	Equation of a Circle	Central, Inscribed, & Circumscribed Angles	Perpendicular Lines	Area on a Coordinate Plane
CCSS Stand.	• G-MG.1	• G-C.2	• G-GPE.5	• G-GPE.7
DOK 1 Example	Write the equation of a circle with a radius of 7 units.	If the measure of angle AOB is 40°, what is the measure of angle ACB?	Determine whether the lines are perpendicular. 3x + 4y = 7 $y = \frac{2}{3}x + 5$	Find the area of the triangle with vertices at (-4, -1), (-2, 5), and (3, -3)
DOK 2 Example	Using the digits 1 to 9 at most two times	Using the digits 0 to 9 at most one time each, place a digit in each box two times:	Using the digits 0 to 9 at most one time each, fill	Using the integers -9 to 9 at most one time each, fill in the
	each, place a digit in	once where the central angle is greater	in the boxes to create	boxes to create coordinates
	each box to make two	than 130° and once where it is less than	two perpendicular lines.	that represent the vertices of
	circles: one with an	130°. You may reuse all the digits each		two triangles: one with an
	area of less than 100	time.		area of less than 55 units ² and
	units ² and one with	central angle	y = x +	one with an area of more than
	more than 100 units ² .	measure = inscribed angle measure = •	$\Box x + \Box y = \Box$	55 units ² . You may $A:(\Box,\Box)$
	$x^2 + y^2 = $	circumscribed angle measure =		reuse all $B:(\square, \square)$
				the integers $C:(\Box, \Box)$ each time.
DOK 3	Using the digits 1 to 9	Using the digits 0 to 9 at most one time	Using the digits 0 to 9 at	Using the integers -9 to 9 at
Example	at most two times	each, place a digit in each box so that the	most one time each, fill	most one time each, fill in the
	each, place a digit in	central angle has the greatest possible	in the boxes to create	boxes to create coordinates
	each box to make a	value.	two perpendicular lines	that represent the vertices of
	circle with the least	central angle measure =	whose solution is as	the triangle with the smallest
	possible area. $ x^2 + y^2 = $	inscribed angle measure = circumscribed angle measure =	close to the origin as	possible area.
			possible.	A:(□,□)
			$y = \frac{1}{1}x + \frac{1}{1}$	$B:(\Box,\Box)$
			$\Box x + \Box y = \Box$	C:(□,□)

Robert Kaplinsky

More free DOK 2 & 3 problems available at openmiddle.com

© 2019 Robert Kaplinsky, robertkaplinsky.com

Depth of Knowledge Matrix – Geometry (Integrated 2)

Торіс	Geometric Proofs	Midpoint of a Line Segment	Sector Area	Transformations
CCSS Stand.	• G-CO.11	• G-GPE.6	• G-C.5	• G-CO.5
DOK 1 Example	Add one geometric marking to demonstrate the quadrilateral is a square.	Find the midpoint of the line segment with the given endpoints. (3, -2) and $(5, 5)$	Find the area of the shaded region.	Rotate the image below 90° counterclockwise about point D and reflect it across a horizontal line.
DOK 2 Example	Using exactly five geometric markings to show that a quadrilateral is a square.	Using the integers -9 to 9 at most one time each, place a digit in each box to create endpoints for two different line segments whose midpoint is (1, 3). One line segment should have a positive slope, and the other should have a negative slope. You may reuse all the integers for each line segment. (\square, \square) and (\square, \square)	Using the digits 0 to 9 at most one time each, place a digit in each box so that the radius and angle measure result in the sector area. radius = units $\Theta = units$ sector $area = \pi units^2$	List three sequences of transformations that take pre-image ABCD to image A'B'C'D'.
DOK 3 Example	What is the least number of geometric markings needed to demonstrate that a quadrilateral is a square?	Using the integers -9 to 9 at most one time each, place a digit in each box to create endpoints for the longest possible line segment whose midpoint is (1, 3).	Using the digits 0 to 9 at most one time each, place a digit in each box so that the radius and angle measure result in the sector area is as close to 60 units ² as possible. radius = units $\Theta =$ $\Theta =$ π units ²	What is the fewest number of transformations needed to take pre-image ABCD to image A'B'C'D'?

More free DOK 2 & 3 problems available at openmiddle.com

© 2019 Robert Kaplinsky, robertkaplinsky.com