RECONSIDERING WORKSHEETS SECONDARY HANDOUT

What's Wrong With Worksheets?

- Problematic math worksheets have many of the same kinds of problems on them and often ______ on the bottom.
- They often feel like ______.
- They don't really build ______.
- They don't lead to great ______.
- They don't give us ______.

What Should We Be Doing Instead?

• Problem One

Solve for x.

21 + *x* = 70

• Problem Two

Using the digits 1 to 9 at most one time each, fill in the boxes to create two equations: one where *x* has a positive value and one where *x* has a negative value. You may reuse digits for each equation.

RobertKaplinsky.com

Problem Three

Using the digits 1 to 9 at most one time each, fill in the boxes to create an equation where x has the greatest possible value.

+ *x* =

- A single ______ problem can replace a whole worksheet of math problems.
- If the surveyed students are like your students, then Problems 2 and 3 help us see that _____% and _____% of the class are students who correctly answered Problem 1 but have hidden misconceptions.
- My favorite reason for using ______
 problems instead of worksheets is ______

How Do We Do It In Our Classrooms?

When students want to give up with rigorous

_____ problems, we can use an

_____ so that they want to

keep trying and develop a growth mindset about mathematics.

Three options for integrating _______,
problems include our ______,
____, and ______,

_, unc

Where Do We Get More Problems?

I can download hundreds of ready-to-go problems from kindergarten through calculus at ______

How Do We Do It Digitally?

- We should not send our students directly to ______ but instead copy the information we need and share it separately.
- To prevent students from being able to accidentally edit the problem in Google Slides, we should place the problem as a image.
- When sharing a link for the Google Slides with students, we
 need to replace the part beginning with ______ at the
 end of the link and put the word ______ in its place. This
 will allow students to make their own copy of the slides instead
 of editing the original.

Depth of Knowledge Matrix - Secondary Math

Торіс	Dividing Fractions	Solving Two-Step Equations	Exponents	Solving Equations with			
				Variables on Both Sides			
CCSS	• 6.NS.1	• 7.EE.4a	• 8.EE.1	• 8.EE.8			
Standard(s)				• A-REI.3			
DOK 1	Evaluate.	Solve for <i>x</i> .	Evaluate.	Solve for <i>x</i> .			
Example	$\frac{4}{9} \div \frac{2}{5}$	2x + 3 = 9	34	3x + 2 = -2x + 4			
DOK 2	Using the digits 1 to 9 at most	Using the digits 1 to 9 at most	Using the digits 1 to 9 at most	Using the digits 1 to 9 at most			
Example	one time each, fill in the boxes	one time each, fill in the boxes	one time each, fill in the boxes	two times each, fill in the			
	to make two different pairs of	to create two equations: one	to make two true number	boxes to make an equation			
	fractions that have a quotient	where <i>x</i> has a positive value	sentences.	with no solutions.			
	of 2/3.	and one where <i>x</i> has a					
		negative value.					
	$\frac{}{} \div \frac{}{} = \frac{2}{3}$	x + =	= 64				
DOK 3	Using the digits 1 to 9 at most	Using the digits 1 to 9 at most	Using the digits 1 to 9 at most	Using the digits 1 to 9 at most			
Example	one time each, fill in the boxes	one time each, fill in the boxes	one time each, fill in the boxes	one time each, fill in the boxes			
	to make two fractions that	to create an equation where x	to make a result that has the	so that the solution is closest			
	have a quotient that is as close to 4/11 as possible.	has the greatest possible value.	greatest value possible.	to zero.			
		□ <i>x</i> +□=□		x+=x+			
Robert Kaplinsky More free DOK 2 & 3 problems available at openmiddle.com © 2017 Robert Kaplinsky, robertkaplinsky.com							

Depth of Knowledge Matrix - Secondary Math

Examplemarkings to show that a quadrilateral is a square.most one time each, fill in the boxes twice: once to make a positive real number product and once to make a negative real number product. $(\Box + \Box i)(\Box + \Box i)$ one time each, fill in the boxes to make two true number sentences.one time each, fill in the to make a positive and a negative solution.DOK 3 ExampleWhat is the least number of geometric markings needed to demonstrate that a quadrilateral is a square?Using the integers -9 to 9 at most one time each, fill in the greatest value.Using the digits 1 to 9 at most one time each, fill in the boxes to make a real number product with the greatest value.Using the digits 1 to 9 at most one time each, fill in the boxes to make a real number possible value.Using the digits 1 to 9 at most one time each, fill in the to make a solution that is close to 100 as possible.	Topic	Geometric Proofs	Complex Numbers	Trigonometric Functions	Definite Integrals
Exampledemonstrate the quadrilateral is a square.Image: Constraint of the square is a square is a square.Image: Constraint of the square is a square is a square.Image: Constraint of the square is a square is a square is a square is a square.Image: Constraint of the square is a square.Image: Constraint of the square is a squ		• G-CO.11	• N-CN.2	• F-TF.3	• N/A
Examplemarkings to show that a quadrilateral is a square.most one time each, fill in the boxes twice: once to make a positive real number product. $(\square + \square i)(\square + \square i)$ one time each, fill in the boxes to make two true number sentences.one time each, fill in the boxes to make a positive and a negative solution.DOK 3 ExampleWhat is the least number of geometric markings needed to demonstrate that a quadrilateral is a square?Using the integers -9 to 9 at most one time each, fill in the geatest value.Using the digits 1 to 9 at most one time each, fill in the boxes to make a real number possible value.Using the digits 1 to 9 at most one time each, fill in the boxes to make a real number possible value.Using the digits 1 to 9 at most one time each, fill in the to make a solution that is close to 100 as possible.		demonstrate the quadrilateral		π	<u>c</u> 6
Example geometric markings needed to demonstrate that a quadrilateral is a square? most one time each, fill in the greatest value. fill in the greatest value. fill in the greatest value.	-	markings to show that a	most one time each, fill in the boxes twice: once to make a positive real number product and once to make a negative real number product.	one time each, fill in the boxes to make two true number sentences.	Using the digits 1 to 9 at most one time each, fill in the boxes to make a positive and a negative solution. $\int_{x}^{x} dx$
$(\underline{ }+\underline{ }i)(\underline{ }+\underline{ }i) = \underline{ }i = \underline{ }i = \underline{ }i$		geometric markings needed to demonstrate that a	most one time each, fill in the boxes to make a real number product with the greatest	one time each, fill in the boxes to find the function's greatest	Using the digits 1 to 9 at most one time each, fill in the boxes to make a solution that is as close to 100 as possible. $\int_{}^{} x^{} dx$